Update app.txt
Browse files
app.txt
CHANGED
@@ -1,124 +1,104 @@
|
|
1 |
import gradio as gr
|
2 |
import joblib
|
3 |
-
import
|
4 |
|
5 |
# Load the model
|
6 |
-
model = joblib.load('
|
7 |
-
|
8 |
-
# Load the encoder
|
9 |
-
encoder = joblib.load('encoder.pkl')
|
10 |
-
|
11 |
-
# Define classes for accident prediction
|
12 |
-
classes = ["No", "Yes"]
|
13 |
|
14 |
# Create the inputs list with dropdown menus and sliders
|
15 |
inputs = [
|
16 |
gr.Dropdown(
|
17 |
-
choices=['
|
18 |
-
|
19 |
-
|
20 |
-
gr.Dropdown(
|
21 |
-
choices=['Pedestrian', 'Bicycles', 'Two Wheelers', 'Auto Rickshaws', 'Cars, Taxis, Vans & LMV', 'Trucks, Lorries', 'Buses', 'Non-motorized Vehicles', 'Others'],
|
22 |
-
label="Impact Type"
|
23 |
-
),
|
24 |
-
gr.Dropdown(
|
25 |
-
choices=['Speeding', 'Jumping Red Light', 'Distracted Driving', 'Drunk Driving', 'Other'],
|
26 |
-
label="Traffic Violations"
|
27 |
),
|
28 |
gr.Dropdown(
|
29 |
-
choices=['
|
30 |
-
|
|
|
31 |
),
|
32 |
-
gr.
|
33 |
-
|
34 |
-
|
35 |
-
),
|
36 |
-
gr.
|
37 |
-
choices=['Traffic Light Signal', 'Police Controlled', 'Stop Sign', 'Flashing Signal/Blinker', 'Uncontrolled', 'Others'],
|
38 |
-
label="Traffic Controls"
|
39 |
-
),
|
40 |
-
gr.Dropdown(
|
41 |
-
choices=['morning', 'afternoon', 'evening', 'night'],
|
42 |
-
label="Time of Day"
|
43 |
-
),
|
44 |
-
gr.Dropdown(
|
45 |
-
choices=['13-17', '18-25', '26-40', '41-60', '60-80', '80 above'],
|
46 |
-
label="Age Group"
|
47 |
-
),
|
48 |
-
gr.Dropdown(
|
49 |
-
choices=['Killed', 'Grievously Injured', 'Minor Injury'],
|
50 |
-
label="Injury Type"
|
51 |
-
),
|
52 |
-
gr.Dropdown(
|
53 |
-
choices=['Yes', 'No'],
|
54 |
-
label="Safety Features"
|
55 |
-
),
|
56 |
-
gr.Slider(minimum=-90, maximum=90, label="Latitude"),
|
57 |
-
gr.Slider(minimum=-180, maximum=180, label="Longitude"),
|
58 |
-
gr.Slider(minimum=1, maximum=10, step= 1, label="Person Count"),
|
59 |
]
|
60 |
|
61 |
-
# Define output label
|
62 |
-
output_label = gr.Label(num_top_classes=4)
|
63 |
|
64 |
# Create a function to make predictions
|
65 |
def predict_accident(
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
age_group,
|
74 |
-
injury,
|
75 |
-
safety_features,
|
76 |
-
Latitude,
|
77 |
-
Longitude,
|
78 |
-
person_count
|
79 |
):
|
80 |
-
data = {
|
81 |
-
'selectedWeatherCondition': weather_conditions,
|
82 |
-
'selectedImpactType': impact_type,
|
83 |
-
'selectedTrafficViolationType': traffic_violations,
|
84 |
-
'selectedRoadFeaturesType': road_features,
|
85 |
-
'selectedRoadJunctionType': junction_types,
|
86 |
-
'selectedTrafficControl': traffic_controls,
|
87 |
-
'selectedTimeOfDay': time_day,
|
88 |
-
'selectedAge': age_group,
|
89 |
-
'selectedInjuryType': injury,
|
90 |
-
'selectedSafetyFeature': safety_features,
|
91 |
-
'Latitude': Latitude,
|
92 |
-
'Longitude': Longitude,
|
93 |
-
'personCount': person_count
|
94 |
-
}
|
95 |
-
|
96 |
-
num_input = {'Latitude': data['Latitude'], 'Longitude': data['Longitude'], 'person_count': data['personCount']}
|
97 |
-
cat_input = {'weather_conditions': data['selectedWeatherCondition'], 'impact_type': data['selectedImpactType'],
|
98 |
-
'traffic_voilations': data['selectedTrafficViolationType'],
|
99 |
-
'road_features': data['selectedRoadFeaturesType'],
|
100 |
-
'junction_types': data['selectedRoadJunctionType'],
|
101 |
-
'traffic_controls': data['selectedTrafficControl'], 'time_day': data['selectedTimeOfDay'],
|
102 |
-
'age_group': data['selectedAge'], 'safety_features': data['selectedSafetyFeature'],
|
103 |
-
'injury': data['selectedInjuryType']}
|
104 |
-
|
105 |
-
input_df = pd.DataFrame([cat_input])
|
106 |
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
|
|
|
112 |
|
113 |
-
|
114 |
-
prediction = model.predict(input_with_coords)
|
115 |
-
|
116 |
-
label = f"Accident Prediction: {classes[int(prediction[0])]}"
|
117 |
return label
|
118 |
|
|
|
119 |
# Create the Gradio interface
|
120 |
-
title = "
|
121 |
-
description = "Predict the
|
122 |
output_label = [gr.Label(num_top_classes=4)]
|
123 |
gr.Interface(
|
124 |
fn=predict_accident,
|
|
|
1 |
import gradio as gr
|
2 |
import joblib
|
3 |
+
import numpy as np
|
4 |
|
5 |
# Load the model
|
6 |
+
model = joblib.load('cricket_score_prediction_model.pkl')
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Create the inputs list with dropdown menus and sliders
|
9 |
inputs = [
|
10 |
gr.Dropdown(
|
11 |
+
choices=['Afghanistan', 'Australia', 'Bangladesh', 'England', 'India', 'Ireland', 'New Zealand', 'Pakistan',
|
12 |
+
'South Africa', 'Sri Lanka', 'West Indies', 'Zimbabwe'],
|
13 |
+
label="Batting Team"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
),
|
15 |
gr.Dropdown(
|
16 |
+
choices=['Afghanistan', 'Australia', 'Bangladesh', 'England', 'India', 'Ireland', 'New Zealand', 'Pakistan',
|
17 |
+
'South Africa', 'Sri Lanka', 'West Indies', 'Zimbabwe'],
|
18 |
+
label="Bowling Team"
|
19 |
),
|
20 |
+
gr.Slider(minimum=0, maximum=400, step=1, label="Total Runs"),
|
21 |
+
gr.Slider(minimum=0, maximum=11, step=1, label="Total Wickets"),
|
22 |
+
gr.Slider(minimum=0.0, maximum=19.6, step=0.1, label="Overs"),
|
23 |
+
gr.Slider(minimum=0, maximum=200, step=1, label="Runs last 5 overs"),
|
24 |
+
gr.Slider(minimum=0, maximum=11,step=1, label="Wickets last 5 overs"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
]
|
26 |
|
|
|
|
|
27 |
|
28 |
# Create a function to make predictions
|
29 |
def predict_accident(
|
30 |
+
batting_team,
|
31 |
+
bowling_team,
|
32 |
+
total_runs,
|
33 |
+
total_wickets,
|
34 |
+
overs,
|
35 |
+
runs_last_5_overs,
|
36 |
+
wickets_last_5_overs
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
prediction_array = []
|
40 |
+
# Batting Team
|
41 |
+
if batting_team == 'Afghanistan':
|
42 |
+
prediction_array = prediction_array + [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
43 |
+
elif batting_team == 'Australia':
|
44 |
+
prediction_array = prediction_array + [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
45 |
+
elif batting_team == 'Bangladesh':
|
46 |
+
prediction_array = prediction_array + [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
47 |
+
elif batting_team == 'England':
|
48 |
+
prediction_array = prediction_array + [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
|
49 |
+
elif batting_team == 'India':
|
50 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
|
51 |
+
elif batting_team == 'Ireland':
|
52 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
|
53 |
+
elif batting_team == 'New Zealand':
|
54 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
|
55 |
+
elif batting_team == 'Pakistan':
|
56 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
|
57 |
+
elif batting_team == 'South Africa':
|
58 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
|
59 |
+
elif batting_team == 'Sri Lanka':
|
60 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
|
61 |
+
elif batting_team == 'West Indies':
|
62 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
|
63 |
+
elif batting_team == 'Zimbabwe':
|
64 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
|
65 |
+
# Bowling Team
|
66 |
+
if bowling_team == 'Afghanistan':
|
67 |
+
prediction_array = prediction_array + [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
68 |
+
elif bowling_team == 'Australia':
|
69 |
+
prediction_array = prediction_array + [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
70 |
+
elif bowling_team == 'Bangladesh':
|
71 |
+
prediction_array = prediction_array + [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
72 |
+
elif bowling_team == 'England':
|
73 |
+
prediction_array = prediction_array + [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
|
74 |
+
elif bowling_team == 'India':
|
75 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
|
76 |
+
elif bowling_team == 'Ireland':
|
77 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
|
78 |
+
elif bowling_team == 'New Zealand':
|
79 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
|
80 |
+
elif bowling_team == 'Pakistan':
|
81 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
|
82 |
+
elif bowling_team == 'South Africa':
|
83 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
|
84 |
+
elif bowling_team == 'Sri Lanka':
|
85 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
|
86 |
+
elif bowling_team == 'West Indies':
|
87 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
|
88 |
+
elif bowling_team == 'Zimbabwe':
|
89 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
|
90 |
|
91 |
+
prediction_array = prediction_array + [total_runs, total_wickets, overs, runs_last_5_overs, wickets_last_5_overs]
|
92 |
+
prediction_array = np.array([prediction_array])
|
93 |
+
prediction = model.predict(prediction_array)
|
94 |
|
95 |
+
label = f"Score Prediction: {(prediction[0])}"
|
|
|
|
|
|
|
96 |
return label
|
97 |
|
98 |
+
|
99 |
# Create the Gradio interface
|
100 |
+
title = "T20i Score Prediction"
|
101 |
+
description = "Predict the score of a T20i match."
|
102 |
output_label = [gr.Label(num_top_classes=4)]
|
103 |
gr.Interface(
|
104 |
fn=predict_accident,
|