File size: 6,646 Bytes
95d40eb
b09dde9
 
 
 
 
95d40eb
 
 
b09dde9
 
 
 
 
 
 
95d40eb
 
 
b09dde9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95d40eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b09dde9
 
 
95d40eb
 
 
 
 
 
 
 
 
 
 
b09dde9
 
 
 
 
 
 
95d40eb
b09dde9
95d40eb
b09dde9
95d40eb
 
b09dde9
95d40eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b09dde9
202f251
b09dde9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95d40eb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import gradio as gr
import cv2
import easyocr
import numpy as np
import requests
import os
import whisper
from transformers import pipeline

API_KEY = os.getenv("API_KEY")

API_URL = "https://api-inference.huggingface.co/models/dima806/facial_emotions_image_detection"
headers = {"Authorization": "Bearer "+ API_KEY+""}

reader = easyocr.Reader(['en'], gpu=False)

model = whisper.load_model("base")
sentiment_analysis = pipeline("sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions")

def query(image):
    image_data = np.array(image, dtype=np.uint8)
    _, buffer = cv2.imencode('.jpg', image_data)
    binary_data = buffer.tobytes()

    response = requests.post(API_URL, headers=headers, data=binary_data)
    return response.json()

def text_extraction(image):
    global text_content
    text_content = ''
    facial_data = query(image)
    text_ = reader.readtext(image)
    threshold = 0.25
    for t_, t in enumerate(text_):
        bbox, text, score = t
        text_content = text_content + ' ' + ' '.join(text)
        if score > threshold:
            cv2.rectangle(image, tuple(map(int, bbox[0])), tuple(map(int, bbox[2])), (0, 255, 0), 5)

    return image, text_content, facial_data

def analyze_sentiment(text):
    results = sentiment_analysis(text)
    sentiment_results = {result['label']: result['score'] for result in results}
    return sentiment_results

def get_sentiment_emoji(sentiment):
    # Define the emojis corresponding to each sentiment
    emoji_mapping = {
        "disappointment": "๐Ÿ˜ž",
        "sadness": "๐Ÿ˜ข",
        "annoyance": "๐Ÿ˜ ",
        "neutral": "๐Ÿ˜",
        "disapproval": "๐Ÿ‘Ž",
        "realization": "๐Ÿ˜ฎ",
        "nervousness": "๐Ÿ˜ฌ",
        "approval": "๐Ÿ‘",
        "joy": "๐Ÿ˜„",
        "anger": "๐Ÿ˜ก",
        "embarrassment": "๐Ÿ˜ณ",
        "caring": "๐Ÿค—",
        "remorse": "๐Ÿ˜”",
        "disgust": "๐Ÿคข",
        "grief": "๐Ÿ˜ฅ",
        "confusion": "๐Ÿ˜•",
        "relief": "๐Ÿ˜Œ",
        "desire": "๐Ÿ˜",
        "admiration": "๐Ÿ˜Œ",
        "optimism": "๐Ÿ˜Š",
        "fear": "๐Ÿ˜จ",
        "love": "โค๏ธ",
        "excitement": "๐ŸŽ‰",
        "curiosity": "๐Ÿค”",
        "amusement": "๐Ÿ˜„",
        "surprise": "๐Ÿ˜ฒ",
        "gratitude": "๐Ÿ™",
        "pride": "๐Ÿฆ"
    }
    return emoji_mapping.get(sentiment, "")

def display_sentiment_results(sentiment_results, option):
    sentiment_text = ""
    for sentiment, score in sentiment_results.items():
        emoji = get_sentiment_emoji(sentiment)
        if option == "Sentiment Only":
            sentiment_text += f"{sentiment} {emoji}\n"
        elif option == "Sentiment + Score":
            sentiment_text += f"{sentiment} {emoji}: {score}\n"
    return sentiment_text

def inference(image, text, audio, sentiment_option):
    extracted_image, extracted_text, extracted_facial_data = text_extraction(image)
    
    audio = whisper.load_audio(audio)
    audio = whisper.pad_or_trim(audio)

    mel = whisper.log_mel_spectrogram(audio).to(model.device)

    _, probs = model.detect_language(mel)
    lang = max(probs, key=probs.get)

    options = whisper.DecodingOptions(fp16=False)
    result = whisper.decode(model, mel, options)

    audio_sentiment_results = analyze_sentiment(result.text)            # Ta - Text from audio
    image_sentiment_results = analyze_sentiment(extracted_text)         # Ti - Text from image 
    text_sentiment_results = analyze_sentiment(text)                    # T  - User defined Text
    
    audio_sentiment_output = display_sentiment_results(audio_sentiment_results, sentiment_option)
    image_sentiment_output = display_sentiment_results(image_sentiment_results, sentiment_option)
    text_sentiment_output = display_sentiment_results(text_sentiment_results, sentiment_option)

    return extracted_image, extracted_facial_data, extracted_text, image_sentiment_output, text_sentiment_output, lang.upper(), result.text, sentiment_output

title = """<h1 align="center">Cross Model Machine Learning (Sentiment Analysis)</h1>"""
image_path = "thmbnail.jpg"
description = """
๐Ÿ’ป This demo showcases a Cross Model Machine Learning for Sentiment Analysis.<br><br>
<br>
โš™๏ธ Components of the tool:<br>
<br>
&nbsp;&nbsp;&nbsp;&nbsp; - Real-time multilingual speech recognition<br>
&nbsp;&nbsp;&nbsp;&nbsp; - Language identification<br>
&nbsp;&nbsp;&nbsp;&nbsp; - Sentiment analysis of the transcriptions<br>
<br>
๐ŸŽฏ The sentiment analysis results are provided as a dictionary with different emotions and their corresponding scores.<br>
<br>

๐Ÿ˜ƒ The sentiment analysis results are displayed with emojis representing the corresponding sentiment.<br>
<br>

โœ… The higher the score for a specific emotion, the stronger the presence of that emotion in the transcribed text.<br>
<br>

โ“ Use the microphone for real-time speech recognition.<br>
<br>

โšก๏ธ The model will transcribe the audio and perform sentiment analysis on the transcribed text.<br>

"""

custom_css = """
#banner-image {
    display: block;
    margin-left: auto;
    margin-right: auto;
}
#chat-message {
    font-size: 14px;
    min-height: 300px;
}
"""

block = gr.Blocks(css=custom_css)

with block:
    gr.HTML(title)

    with gr.Row():
        with gr.Column():
            gr.Image(image_path, elem_id="banner-image", show_label=False)
        with gr.Column():
            gr.HTML(description)

    with gr.Blocks():
        with gr.Row():
            with gr.Column():
                image = gr.Image()
                
                image_output = gr.Image()
                text_output = gr.Textbox(label="Text Content")
                text_sentiment = gr.Textbox(label="Text Sentiment")
                facial_output = gr.JSON(label="Facial Data")

            with gr.Text():
                gr.Textbox(label="Text Content")

                output_text_sentiment = gr.TextBox("Text Sentiment")
            
            with gr.Column():
                audio = gr.Audio(label="Input Audio", show_label=False, type="filepath")
                sentiment_option = gr.Radio(choices=["Sentiment Only", "Sentiment + Score"], label="Select an option")
                
                lang_str = gr.Textbox(label="Language")
                text = gr.Textbox(label="Transcription")
                sentiment_output = gr.Textbox(label="Sentiment Analysis Results")

        
        btn = gr.Button("Transcribe")

        btn.click(inference, inputs=[image, text, audio, sentiment_option], outputs=[image_output, facial_output, text_output, text_sentiment, output_text_sentiment, lang_str, text, sentiment_output])

block.launch()