import gradio as gr from huggingface_hub import InferenceClient import requests from bs4 import BeautifulSoup from bs4.element import Comment def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def get_text_from_url(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') texts = soup.find_all(text=True) visible_texts = filter(tag_visible, texts) return "\n".join(t.strip() for t in visible_texts) # Gather text from your homepage (and any extensions) text_list = [] homepage_url = "https://sites.google.com/view/abhilashnandy/home/" extensions = ["", "pmrf-profile-page"] for ext in extensions: url_text = get_text_from_url(homepage_url + ext) text_list.append(url_text) # Build the system message with homepage info. SYSTEM_MESSAGE = ( "You are a QA chatbot to answer queries (in less than 30 words) on my homepage that has the following information -\n\n" + "\n\n".join(text_list) + "\n\n" ) # Use the GPTQ variant of TinyLlama which includes the tokenizer configuration client = InferenceClient("TheBloke/TinyLlama-1.1B-Chat-v1.0-GPTQ") def respond(message, history: list[tuple[str, str]], system_message=SYSTEM_MESSAGE, max_tokens=140, temperature=0.7, top_p=0.95): messages = [{"role": "system", "content": system_message}] for val in history: if len(val) >= 1: messages.append({"role": "user", "content": "Question: " + val[0]}) if len(val) >= 2: messages.append({"role": "assistant", "content": "Answer: " + val[1]}) messages.append({"role": "user", "content": message}) try: response = client.chat_completion( messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, # stream=True, # Uncomment this if you want streaming output for debugging. ) return response.choices[0].message["content"] except Exception as e: print(f"An error occurred: {e}") return str(e) initial_message = [("user", "Yo who dis Abhilash?")] markdown_note = "## Ask Anything About Me! (Might show a tad bit of hallucination!)" demo = gr.Blocks() with demo: gr.Markdown(markdown_note) gr.ChatInterface( fn=respond, # examples=["Yo who dis Abhilash?", "What is Abhilash's most recent publication?"], additional_inputs=[ # Additional components can be added here if needed. ], ) if __name__ == "__main__": demo.launch()