import gradio as gr from huggingface_hub import InferenceClient import requests from bs4 import BeautifulSoup from bs4.element import Comment def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True def get_text_from_url(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') texts = soup.find_all(text=True) visible_texts = filter(tag_visible, texts) return "\n".join(t.strip() for t in visible_texts) # Pre-fetch and truncate homepage text to keep the prompt short text_list = [] homepage_url = "https://sites.google.com/view/abhilashnandy/home/" extensions = ["", "pmrf-profile-page"] for ext in extensions: full_text = get_text_from_url(homepage_url + ext) truncated_text = full_text[:1000] # use only the first 1000 characters text_list.append(truncated_text) SYSTEM_MESSAGE = ( "You are a QA chatbot to answer queries (in less than 30 words) on my homepage. " "Context: " + " ".join(text_list) ) # Use the GPTQ version that includes the tokenizer configuration client = InferenceClient("TheBloke/TinyLlama-1.1B-Chat-v1.0-GPTQ") def respond(message, history: list[tuple[str, str]], system_message=SYSTEM_MESSAGE, max_tokens=100, temperature=0.7, top_p=0.95): messages = [{"role": "system", "content": system_message}] for q, a in history: messages.append({"role": "user", "content": "Question: " + q}) messages.append({"role": "assistant", "content": "Answer: " + a}) messages.append({"role": "user", "content": message}) try: # Enable streaming mode to start receiving output faster. response_stream = client.chat_completion( messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True, ) output = "" for chunk in response_stream: if hasattr(chunk, "choices") and chunk.choices: part = chunk.choices[0].message.get("content", "") output += part return output.strip() except Exception as e: print(f"An error occurred: {e}") return str(e) initial_message = [("user", "Yo who dis Abhilash?")] markdown_note = "## Ask Anything About Me! (Might show a tad bit of hallucination!)" demo = gr.Blocks() with demo: gr.Markdown(markdown_note) gr.ChatInterface( fn=respond, # examples=["Yo who dis Abhilash?", "What is Abhilash's most recent publication?"], additional_inputs=[ # You can add extra Gradio components here if needed. ], ) if __name__ == "__main__": demo.launch()