Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from sentence_transformers import SentenceTransformer, util
|
4 |
+
from groq import Groq
|
5 |
+
from PyPDF2 import PdfReader
|
6 |
+
|
7 |
+
# Initialize the retriever and Groq client
|
8 |
+
retriever = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
9 |
+
client = Groq(api_key=groq_api) # Replace with your actual Groq API key
|
10 |
+
|
11 |
+
# Knowledge base (documents) and embeddings
|
12 |
+
documents = [
|
13 |
+
"Retrieval-Augmented Generation (RAG) is an AI framework that combines the strengths of retrieval-based and generative models.",
|
14 |
+
"The main components of a RAG system are the retriever and the generator.",
|
15 |
+
"A key benefit of Retrieval-Augmented Generation is that it can produce more accurate responses compared to standalone generative models.",
|
16 |
+
"The retrieval process in a RAG system often relies on embedding-based models, like Sentence-BERT or DPR.",
|
17 |
+
"Common use cases of RAG include chatbots, customer support systems, and knowledge retrieval for business intelligence."
|
18 |
+
]
|
19 |
+
document_embeddings = retriever.encode(documents, convert_to_tensor=True)
|
20 |
+
|
21 |
+
# Function to retrieve top relevant document and truncate context if too long
|
22 |
+
def retrieve(query, top_k=1, max_tokens=100):
|
23 |
+
query_embedding = retriever.encode(query, convert_to_tensor=True)
|
24 |
+
hits = util.semantic_search(query_embedding, document_embeddings, top_k=top_k)
|
25 |
+
top_docs = [documents[hit['corpus_id']] for hit in hits[0]]
|
26 |
+
|
27 |
+
# Truncate context to max_tokens if necessary
|
28 |
+
context = top_docs[0] if hits[0] else ""
|
29 |
+
context = ' '.join(context.split()[:max_tokens]) # Limit to max_tokens words
|
30 |
+
return context
|
31 |
+
|
32 |
+
# Function to generate response using Groq
|
33 |
+
def generate_response(query, context):
|
34 |
+
response = client.chat.completions.create(
|
35 |
+
messages=[
|
36 |
+
{
|
37 |
+
"role": "user",
|
38 |
+
"content": f"Context: {context} Question: {query} Answer:"
|
39 |
+
}
|
40 |
+
],
|
41 |
+
model="gemma2-9b-it"
|
42 |
+
)
|
43 |
+
return response.choices[0].message.content
|
44 |
+
|
45 |
+
# Function to handle PDF upload and text extraction
|
46 |
+
def extract_text_from_pdf(file):
|
47 |
+
pdf_reader = PdfReader(file)
|
48 |
+
text = ""
|
49 |
+
for page in pdf_reader.pages:
|
50 |
+
text += page.extract_text()
|
51 |
+
return text
|
52 |
+
|
53 |
+
# Function to update knowledge base with new content from PDF
|
54 |
+
def update_knowledge_base(pdf_text):
|
55 |
+
global documents, document_embeddings
|
56 |
+
documents.append(pdf_text)
|
57 |
+
document_embeddings = retriever.encode(documents, convert_to_tensor=True)
|
58 |
+
|
59 |
+
# Streamlit app layout
|
60 |
+
st.title("RAG-based Question Answering App")
|
61 |
+
st.write("Upload a PDF, ask questions based on its content, and get answers!")
|
62 |
+
|
63 |
+
# Upload PDF file
|
64 |
+
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")
|
65 |
+
if uploaded_file:
|
66 |
+
pdf_text = extract_text_from_pdf(uploaded_file)
|
67 |
+
update_knowledge_base(pdf_text)
|
68 |
+
st.write("PDF content successfully added to the knowledge base.")
|
69 |
+
|
70 |
+
# Question input
|
71 |
+
question = st.text_input("Enter your question:")
|
72 |
+
if question:
|
73 |
+
retrieved_context = retrieve(question)
|
74 |
+
if retrieved_context:
|
75 |
+
answer = generate_response(question, retrieved_context)
|
76 |
+
else:
|
77 |
+
answer = "I have no knowledge about this topic."
|
78 |
+
st.write("Answer:", answer)
|