Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,82 +1,160 @@
|
|
|
|
|
|
1 |
import os
|
|
|
2 |
import streamlit as st
|
3 |
-
from
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
# Initialize
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
documents = [
|
17 |
-
"Retrieval-Augmented Generation (RAG) is an AI framework that combines the strengths of retrieval-based and generative models.",
|
18 |
-
"The main components of a RAG system are the retriever and the generator.",
|
19 |
-
"A key benefit of Retrieval-Augmented Generation is that it can produce more accurate responses compared to standalone generative models.",
|
20 |
-
"The retrieval process in a RAG system often relies on embedding-based models, like Sentence-BERT or DPR.",
|
21 |
-
"Common use cases of RAG include chatbots, customer support systems, and knowledge retrieval for business intelligence."
|
22 |
-
]
|
23 |
-
document_embeddings = retriever.encode(documents, convert_to_tensor=True)
|
24 |
-
|
25 |
-
# Function to retrieve top relevant document and truncate context if too long
|
26 |
-
def retrieve(query, top_k=1, max_tokens=100):
|
27 |
-
query_embedding = retriever.encode(query, convert_to_tensor=True)
|
28 |
-
hits = util.semantic_search(query_embedding, document_embeddings, top_k=top_k)
|
29 |
-
top_docs = [documents[hit['corpus_id']] for hit in hits[0]]
|
30 |
-
|
31 |
-
# Truncate context to max_tokens if necessary
|
32 |
-
context = top_docs[0] if hits[0] else ""
|
33 |
-
context = ' '.join(context.split()[:max_tokens]) # Limit to max_tokens words
|
34 |
-
return context
|
35 |
-
|
36 |
-
# Function to generate response using Groq
|
37 |
-
def generate_response(query, context):
|
38 |
-
response = client.chat.completions.create(
|
39 |
-
messages=[
|
40 |
-
{
|
41 |
-
"role": "user",
|
42 |
-
"content": f"Context: {context} Question: {query} Answer:"
|
43 |
-
}
|
44 |
-
],
|
45 |
-
model="gemma2-9b-it"
|
46 |
-
)
|
47 |
-
return response.choices[0].message.content
|
48 |
-
|
49 |
-
# Function to handle PDF upload and text extraction
|
50 |
-
def extract_text_from_pdf(file):
|
51 |
-
pdf_reader = PdfReader(file)
|
52 |
text = ""
|
53 |
-
|
54 |
-
|
|
|
55 |
return text
|
56 |
|
57 |
-
#
|
58 |
-
def
|
59 |
-
|
60 |
-
|
61 |
-
document_embeddings = retriever.encode(documents, convert_to_tensor=True)
|
62 |
|
63 |
-
#
|
64 |
-
|
65 |
-
|
|
|
|
|
66 |
|
67 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")
|
69 |
-
|
|
|
|
|
70 |
pdf_text = extract_text_from_pdf(uploaded_file)
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
if
|
79 |
-
|
80 |
-
|
81 |
-
answer =
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fitz # PyMuPDF
|
2 |
+
import faiss
|
3 |
import os
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
import streamlit as st
|
6 |
+
from groq import Groq # Import Groq client library
|
7 |
+
|
8 |
+
# Initialize the Groq API client
|
9 |
+
groq_api_key = os.getenv("groq_api") # Set your Groq API key as an environment variable
|
10 |
+
client = Groq(api_key=groq_api_key)
|
11 |
+
|
12 |
+
# Initialize sentence transformer model and vector store
|
13 |
+
embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
14 |
+
dimension = 384 # Dimension of embeddings in all-MiniLM-L6-v2
|
15 |
+
index = faiss.IndexFlatL2(dimension)
|
16 |
+
|
17 |
+
# PDF processing function
|
18 |
+
def extract_text_from_pdf(pdf_file):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
text = ""
|
20 |
+
with fitz.open(pdf_file) as pdf:
|
21 |
+
for page in pdf:
|
22 |
+
text += page.get_text()
|
23 |
return text
|
24 |
|
25 |
+
# Split text into chunks for embedding
|
26 |
+
def split_text(text, chunk_size=512):
|
27 |
+
words = text.split()
|
28 |
+
return [" ".join(words[i:i+chunk_size]) for i in range(0, len(words), chunk_size)]
|
|
|
29 |
|
30 |
+
# Embed and add chunks to FAISS index
|
31 |
+
def embed_and_store_chunks(chunks):
|
32 |
+
embeddings = embedder.encode(chunks)
|
33 |
+
index.add(embeddings)
|
34 |
+
return embeddings
|
35 |
|
36 |
+
# Retrieve the most relevant chunks
|
37 |
+
def retrieve_chunks(question, top_k=3):
|
38 |
+
question_embedding = embedder.encode([question])
|
39 |
+
distances, indices = index.search(question_embedding, top_k)
|
40 |
+
retrieved_chunks = [chunks[idx] for idx in indices[0]]
|
41 |
+
return " ".join(retrieved_chunks)
|
42 |
+
|
43 |
+
# Generate answer using Groq API
|
44 |
+
def generate_answer(question, context):
|
45 |
+
prompt = f"Context: {context}\n\nQuestion: {question}\nAnswer:"
|
46 |
+
response = client.generate(prompt=prompt, max_tokens=100, temperature=0.7)
|
47 |
+
return response["choices"][0]["text"].strip()
|
48 |
+
|
49 |
+
# Streamlit app
|
50 |
+
st.title("PDF Question-Answer Chatbot with RAG using Groq API")
|
51 |
+
|
52 |
+
# File uploader
|
53 |
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")
|
54 |
+
|
55 |
+
if uploaded_file is not None:
|
56 |
+
# Extract text from the PDF file
|
57 |
pdf_text = extract_text_from_pdf(uploaded_file)
|
58 |
+
# Split the text and embed/store chunks in FAISS
|
59 |
+
chunks = split_text(pdf_text)
|
60 |
+
embed_and_store_chunks(chunks)
|
61 |
+
st.success("PDF processed and knowledge base created!")
|
62 |
+
|
63 |
+
# User question input
|
64 |
+
question = st.text_input("Ask a question about the PDF content:")
|
65 |
+
if question:
|
66 |
+
# Retrieve relevant context and generate answer
|
67 |
+
context = retrieve_chunks(question)
|
68 |
+
answer = generate_answer(question, context)
|
69 |
+
st.write("Answer:", answer)
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
# import os
|
80 |
+
# import streamlit as st
|
81 |
+
# from sentence_transformers import SentenceTransformer, util
|
82 |
+
# from groq import Groq
|
83 |
+
# from PyPDF2 import PdfReader
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
# # Initialize the retriever and Groq client
|
88 |
+
# retriever = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
89 |
+
# # client = Groq(api_key=groq_api) # Replace with your actual Groq API key
|
90 |
+
# key = os.getenv("groq_api")
|
91 |
+
# client = Groq(api_key = key)
|
92 |
+
|
93 |
+
# # Knowledge base (documents) and embeddings
|
94 |
+
# documents = [
|
95 |
+
# "Retrieval-Augmented Generation (RAG) is an AI framework that combines the strengths of retrieval-based and generative models.",
|
96 |
+
# "The main components of a RAG system are the retriever and the generator.",
|
97 |
+
# "A key benefit of Retrieval-Augmented Generation is that it can produce more accurate responses compared to standalone generative models.",
|
98 |
+
# "The retrieval process in a RAG system often relies on embedding-based models, like Sentence-BERT or DPR.",
|
99 |
+
# "Common use cases of RAG include chatbots, customer support systems, and knowledge retrieval for business intelligence."
|
100 |
+
# ]
|
101 |
+
# document_embeddings = retriever.encode(documents, convert_to_tensor=True)
|
102 |
+
|
103 |
+
# # Function to retrieve top relevant document and truncate context if too long
|
104 |
+
# def retrieve(query, top_k=1, max_tokens=100):
|
105 |
+
# query_embedding = retriever.encode(query, convert_to_tensor=True)
|
106 |
+
# hits = util.semantic_search(query_embedding, document_embeddings, top_k=top_k)
|
107 |
+
# top_docs = [documents[hit['corpus_id']] for hit in hits[0]]
|
108 |
+
|
109 |
+
# # Truncate context to max_tokens if necessary
|
110 |
+
# context = top_docs[0] if hits[0] else ""
|
111 |
+
# context = ' '.join(context.split()[:max_tokens]) # Limit to max_tokens words
|
112 |
+
# return context
|
113 |
+
|
114 |
+
# # Function to generate response using Groq
|
115 |
+
# def generate_response(query, context):
|
116 |
+
# response = client.chat.completions.create(
|
117 |
+
# messages=[
|
118 |
+
# {
|
119 |
+
# "role": "user",
|
120 |
+
# "content": f"Context: {context} Question: {query} Answer:"
|
121 |
+
# }
|
122 |
+
# ],
|
123 |
+
# model="gemma2-9b-it"
|
124 |
+
# )
|
125 |
+
# return response.choices[0].message.content
|
126 |
+
|
127 |
+
# # Function to handle PDF upload and text extraction
|
128 |
+
# def extract_text_from_pdf(file):
|
129 |
+
# pdf_reader = PdfReader(file)
|
130 |
+
# text = ""
|
131 |
+
# for page in pdf_reader.pages:
|
132 |
+
# text += page.extract_text()
|
133 |
+
# return text
|
134 |
+
|
135 |
+
# # Function to update knowledge base with new content from PDF
|
136 |
+
# def update_knowledge_base(pdf_text):
|
137 |
+
# global documents, document_embeddings
|
138 |
+
# documents.append(pdf_text)
|
139 |
+
# document_embeddings = retriever.encode(documents, convert_to_tensor=True)
|
140 |
+
|
141 |
+
# # Streamlit app layout
|
142 |
+
# st.title("RAG-based Question Answering App")
|
143 |
+
# st.write("Upload a PDF, ask questions based on its content, and get answers!")
|
144 |
+
|
145 |
+
# # Upload PDF file
|
146 |
+
# uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")
|
147 |
+
# if uploaded_file:
|
148 |
+
# pdf_text = extract_text_from_pdf(uploaded_file)
|
149 |
+
# update_knowledge_base(pdf_text)
|
150 |
+
# st.write("PDF content successfully added to the knowledge base.")
|
151 |
+
|
152 |
+
# # Question input
|
153 |
+
# question = st.text_input("Enter your question:")
|
154 |
+
# if question:
|
155 |
+
# retrieved_context = retrieve(question)
|
156 |
+
# if retrieved_context:
|
157 |
+
# answer = generate_response(question, retrieved_context)
|
158 |
+
# else:
|
159 |
+
# answer = "I have no knowledge about this topic."
|
160 |
+
# st.write("Answer:", answer)
|