Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,8 +5,8 @@ from groq import Groq
|
|
| 5 |
from PyPDF2 import PdfReader
|
| 6 |
|
| 7 |
# Set your Groq API key here or use environment variable
|
| 8 |
-
GROQ_API_TOKEN = os.getenv("
|
| 9 |
-
client = Groq(api_key=
|
| 10 |
|
| 11 |
# Initialize the SentenceTransformer model for embeddings
|
| 12 |
retriever = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
|
@@ -16,16 +16,21 @@ documents = []
|
|
| 16 |
document_embeddings = None
|
| 17 |
|
| 18 |
# Function to retrieve top relevant document
|
| 19 |
-
def retrieve(query, top_k=
|
| 20 |
if document_embeddings is None:
|
| 21 |
return None
|
| 22 |
query_embedding = retriever.encode(query, convert_to_tensor=True)
|
| 23 |
hits = util.semantic_search(query_embedding, document_embeddings, top_k=top_k)
|
| 24 |
top_docs = [documents[hit['corpus_id']] for hit in hits[0]]
|
| 25 |
-
return top_docs
|
| 26 |
|
| 27 |
# Function to generate response using Groq
|
| 28 |
def generate_response(query, context):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
response = client.chat.completions.create(
|
| 30 |
messages=[{
|
| 31 |
"role": "user",
|
|
@@ -78,10 +83,6 @@ if question:
|
|
| 78 |
|
| 79 |
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
# import os
|
| 86 |
# import streamlit as st
|
| 87 |
# from sentence_transformers import SentenceTransformer, util
|
|
|
|
| 5 |
from PyPDF2 import PdfReader
|
| 6 |
|
| 7 |
# Set your Groq API key here or use environment variable
|
| 8 |
+
GROQ_API_TOKEN = os.getenv("GROQ_API_TOKEN")
|
| 9 |
+
client = Groq(api_key=groq_api)
|
| 10 |
|
| 11 |
# Initialize the SentenceTransformer model for embeddings
|
| 12 |
retriever = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
|
|
|
| 16 |
document_embeddings = None
|
| 17 |
|
| 18 |
# Function to retrieve top relevant document
|
| 19 |
+
def retrieve(query, top_k=3): # Retrieve top 3 relevant documents
|
| 20 |
if document_embeddings is None:
|
| 21 |
return None
|
| 22 |
query_embedding = retriever.encode(query, convert_to_tensor=True)
|
| 23 |
hits = util.semantic_search(query_embedding, document_embeddings, top_k=top_k)
|
| 24 |
top_docs = [documents[hit['corpus_id']] for hit in hits[0]]
|
| 25 |
+
return ' '.join(top_docs) if hits[0] else None # Concatenate the top documents
|
| 26 |
|
| 27 |
# Function to generate response using Groq
|
| 28 |
def generate_response(query, context):
|
| 29 |
+
# Limit context size to prevent exceeding token limits
|
| 30 |
+
max_context_length = 200 # Adjust this number based on your needs
|
| 31 |
+
if len(context.split()) > max_context_length:
|
| 32 |
+
context = ' '.join(context.split()[:max_context_length]) # Truncate context to the first N words
|
| 33 |
+
|
| 34 |
response = client.chat.completions.create(
|
| 35 |
messages=[{
|
| 36 |
"role": "user",
|
|
|
|
| 83 |
|
| 84 |
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
# import os
|
| 87 |
# import streamlit as st
|
| 88 |
# from sentence_transformers import SentenceTransformer, util
|