File size: 23,387 Bytes
96f51f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d17b6
96f51f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9304981
96f51f8
9304981
96f51f8
9304981
96f51f8
9304981
96f51f8
 
 
9304981
96f51f8
9304981
96f51f8
9304981
96f51f8
9304981
96f51f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12c8cdf
07913c3
9304981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07913c3
96f51f8
b121792
96f51f8
 
b417f80
961d2c0
96f51f8
 
b121792
 
96f51f8
 
b121792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f51f8
b121792
 
 
 
 
 
96f51f8
b121792
 
 
 
 
 
 
 
96f51f8
b121792
 
96f51f8
b121792
 
 
 
96f51f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce5a0ef
96f51f8
 
 
 
 
 
 
 
 
ce5a0ef
 
96f51f8
ce5a0ef
96f51f8
 
 
 
 
 
 
 
 
 
 
ce5a0ef
96f51f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce5a0ef
96f51f8
ce5a0ef
 
96f51f8
 
ce5a0ef
 
 
96f51f8
 
 
 
 
 
ce5a0ef
 
 
96f51f8
 
ce5a0ef
96f51f8
 
 
 
 
ce5a0ef
 
96f51f8
 
87d17b6
 
 
 
 
 
ce5a0ef
87d17b6
 
ce5a0ef
 
 
 
87d17b6
 
ce5a0ef
 
87d17b6
 
ef0c77d
ce5a0ef
87d17b6
ce5a0ef
87d17b6
 
 
 
 
 
 
 
 
 
 
 
 
 
96f51f8
87d17b6
 
 
 
 
 
 
96f51f8
87d17b6
 
ce5a0ef
3e4d2df
 
87d17b6
 
 
3e4d2df
96f51f8
3e4d2df
96f51f8
87d17b6
96f51f8
 
 
 
 
 
 
 
 
 
23cb762
96f51f8
 
23cb762
96f51f8
 
 
23cb762
 
96f51f8
 
 
 
 
 
 
 
 
 
 
 
 
 
1f9349d
 
9304981
 
 
 
 
 
 
96f51f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9304981
96f51f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e4d2df
 
 
 
 
 
ef0c77d
 
 
 
3e4d2df
 
 
 
96f51f8
3e4d2df
 
96f51f8
 
3e4d2df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f51f8
 
3e4d2df
 
 
 
 
 
 
 
 
ef0c77d
 
 
 
3e4d2df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f51f8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
import os
os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'

import streamlit as st
import pandas as pd
import torch
import random
from transformers import (
    T5ForConditionalGeneration, 
    T5Tokenizer,
    Trainer, 
    TrainingArguments,
    DataCollatorForSeq2Seq
)
from torch.utils.data import Dataset
from datetime import datetime
import numpy as np
from random import choice
import re

class TravelDataset(Dataset):
    def __init__(self, data, tokenizer, max_length=512):
        """
        data: DataFrame with columns ['destination', 'days', 'budget', 'interests', 'travel_plan']
        """
        self.tokenizer = tokenizer
        self.data = data
        self.max_length = max_length
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        row = self.data.iloc[idx]
        input_text = self.format_input_text(row)
        target_text = row['travel_plan']
        
        # Tokenize inputs
        input_encodings = self.tokenizer(
            input_text,
            max_length=self.max_length,
            padding='max_length',
            truncation=True,
            return_tensors='pt'
        )
        
        # Tokenize targets
        target_encodings = self.tokenizer(
            target_text,
            max_length=self.max_length,
            padding='max_length',
            truncation=True,
            return_tensors='pt'
        )
        
        return {
            'input_ids': input_encodings['input_ids'].squeeze(),
            'attention_mask': input_encodings['attention_mask'].squeeze(),
            'labels': target_encodings['input_ids'].squeeze()
        }
    
    @staticmethod
    def format_input_text(row):
        return f"Plan a trip to {row['destination']} for {row['days']} days with a {row['budget']} budget. Include activities related to: {row['interests']}"

def create_sample_data():
    """Create sample training data for travel plans ranging from 1 to 14 days"""
    destinations = ['Paris', 'Tokyo', 'New York', 'London', 'Rome']
    budgets = ['Budget', 'Moderate', 'Luxury']
    interests_list = [
        'Culture, History',
        'Food, Shopping',
        'Art, Museums',
        'Nature, Adventure',
        'Relaxation, Food'
    ]
    
    # Activity templates for different interests
    activities = {
        'Culture': ['Visit historical sites', 'Explore local traditions', 'Attend cultural events', 
                'Visit ancient monuments', 'Experience local festivals'],
        'History': ['Tour ancient ruins', 'Visit museums', 'Explore historic districts', 
                'Join guided history walks', 'Visit heritage sites'],
        'Food': ['Try local cuisine', 'Join cooking classes', 'Visit food markets', 
                'Dine at famous restaurants', 'Food tasting tours'],
        'Shopping': ['Browse local markets', 'Visit shopping districts', 'Shop at boutiques', 
                'Explore artisan shops', 'Visit shopping centers'],
        'Art': ['Visit art galleries', 'Attend art exhibitions', 'Join art workshops', 
                'Visit artist studios', 'Explore street art'],
        'Museums': ['Tour famous museums', 'Visit specialty museums', 'Join museum tours', 
                'Explore art collections', 'Visit cultural institutes'],
        'Nature': ['Visit parks', 'Nature walks', 'Explore gardens', 'Visit natural landmarks', 
                'Outdoor activities'],
        'Adventure': ['Join adventure tours', 'Try outdoor sports', 'Explore hidden spots', 
                'Take scenic hikes', 'Adventure activities'],
        'Relaxation': ['Spa treatments', 'Visit peaceful gardens', 'Leisure activities', 
                'Relaxing sightseeing', 'Peaceful excursions']
    }
    
    def generate_daily_plan(day, total_days, interests, budget_level, destination):
        """Generate a single day's plan based on interests and duration"""
        interest1, interest2 = [i.strip() for i in interests.split(',')]
        
        # Select activities based on interests
        activity1 = choice(activities[interest1])
        activity2 = choice(activities[interest2])
        
        if total_days <= 3:
            # For short trips, pack more activities per day
            return f"Day {day}: {activity1} in the morning. {activity2} in the afternoon/evening. Experience {destination}'s {budget_level.lower()} offerings."
        elif total_days <= 7:
            # Medium trips have a moderate pace
            return f"Day {day}: Focus on {activity1}. Later, enjoy {activity2}."
        else:
            # Longer trips have a more relaxed pace
            return f"Day {day}: {'Start with' if day == 1 else 'Continue with'} {activity1}. Optional: {activity2}."
    
    data = []
    for dest in destinations:
        for days in range(1, 15):  # 1 to 14 days
            for budget in budgets:
                for interests in interests_list:
                    # Generate multi-day plan
                    daily_plans = []
                    for day in range(1, days + 1):
                        daily_plan = generate_daily_plan(day, days, interests, budget, dest)
                        daily_plans.append(daily_plan)
                    
                    # Combine all days into one plan
                    full_plan = "\n".join(daily_plans)
                    
                    data.append({
                        'destination': dest,
                        'days': days,
                        'budget': budget,
                        'interests': interests,
                        'travel_plan': full_plan
                    })
    
    return pd.DataFrame(data)

@st.cache_resource
def load_or_train_model():
    """Load trained model or train new one"""
    model_path = "trained_travel_planner"

    if os.path.exists(model_path):
        try:
            model = T5ForConditionalGeneration.from_pretrained(model_path)
            tokenizer = T5Tokenizer.from_pretrained(model_path)
            if torch.cuda.is_available():
                model = model.cuda()
            st.success("βœ“ Loaded existing model")
            return model, tokenizer
        except Exception as e:
            st.warning("Could not load existing model, will train new one")
            st.error(f"Error loading trained model: {str(e)}")

    # If no trained model exists or loading fails, train new model
    return train_model()

def train_model():
    """Train the T5 model on travel planning data"""
    try:
        # Initialize model and tokenizer
        tokenizer = T5Tokenizer.from_pretrained('t5-base', legacy=False)
        model = T5ForConditionalGeneration.from_pretrained('t5-base')
        
        # Create or load training data
        if os.path.exists('travel_data.csv'):
            data = pd.read_csv('travel_data.csv')
        else:
            data = create_sample_data()
            data.to_csv('travel_data.csv', index=False)
        
        # Split data into train and validation
        train_size = int(0.8 * len(data))
        train_data = data[:train_size]
        val_data = data[train_size:]
        
        # Create datasets
        train_dataset = TravelDataset(train_data, tokenizer)
        val_dataset = TravelDataset(val_data, tokenizer)
        
        # Training arguments
        training_args = TrainingArguments(
            output_dir=f"./travel_planner_model_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
            num_train_epochs=3,
            per_device_train_batch_size=4,
            per_device_eval_batch_size=4,
            warmup_steps=500,
            weight_decay=0.01,
            logging_dir="./logs",
            logging_steps=10,
            evaluation_strategy="steps",
            eval_steps=50,
            save_steps=100,
            load_best_model_at_end=True,
        )
        
        # Data collator
        data_collator = DataCollatorForSeq2Seq(
            tokenizer=tokenizer,
            model=model,
            padding=True
        )
        
        # Initialize trainer
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=train_dataset,
            eval_dataset=val_dataset,
            data_collator=data_collator,
        )
        
        # Train the model
        trainer.train()
        
        # Save the model and tokenizer
        model_path = "./trained_travel_planner"
        model.save_pretrained(model_path)
        tokenizer.save_pretrained(model_path)
        
        return model, tokenizer
        
    except Exception as e:
        st.error(f"Error during model training: {str(e)}")
        return None, None

def generate_travel_plan(destination, days, interests, budget, model, tokenizer):
    """Generate a travel plan using the trained model with enhanced features"""
    try:
        # Format interests into a string, limit to top 3 if more are provided
        interests = interests[:3]  # Limit to top 3 interests for better results
        interests_str = ', '.join(interests)
        
        # Format input prompt to match training data format
        prompt = f"Plan a trip to {destination} for {days} days with a {budget} budget. Include activities related to: {interests_str}"
        
        # Tokenize input with padding
        inputs = tokenizer(
            prompt,
            return_tensors="pt",
            max_length=512,
            padding="max_length",
            truncation=True
        )
        
        # Move inputs to GPU if available
        if torch.cuda.is_available():
            inputs = {k: v.cuda() for k, v in inputs.items()}
            model = model.cuda()
        
        # Generate output with carefully tuned parameters
        outputs = model.generate(
            **inputs,
            max_length=512,
            min_length=100,  # Ensure reasonable length output
            num_beams=4,  # Beam search for better quality
            no_repeat_ngram_size=3,  # Avoid repetition
            length_penalty=1.2,  # Favor longer sequences
            early_stopping=True,
            temperature=0.8,  # Slightly random but still focused
            top_k=50,
            top_p=0.9,
            do_sample=True,
            repetition_penalty=1.2  # Additional repetition avoidance
        )
        
        # Decode output
        travel_plan = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        # Handle empty output
        if not travel_plan.strip():
            raise ValueError("Generated plan is empty")
            
        # Format the plan using the new formatting function
        formatted_plan = format_travel_plan(travel_plan, days)
        
        return formatted_plan
        
    except Exception as e:
        error_msg = f"Error generating travel plan: {str(e)}"
        print(error_msg)  # Log the error
        
        # Generate a basic fallback plan
        fallback_plan = generate_fallback_plan(destination, days, interests, budget)
        return fallback_plan
    
def generate_fallback_plan(destination, days, interests, budget):
    """Generate a basic fallback plan if the model fails"""
    # Start with the overview section
    fallback_plan = f"# Emergency Travel Plan for {destination}\n\n"
    
    # Basic activity templates
    basic_activities = {
        'Culture': ['Visit museums', 'Explore historical sites', 'Attend local events'],
        'History': ['Tour historic landmarks', 'Visit ancient sites', 'Join history walks'],
        'Food': ['Try local cuisine', 'Visit food markets', 'Take cooking classes'],
        'Nature': ['Visit parks', 'Go hiking', 'Explore gardens'],
        'Shopping': ['Visit markets', 'Shop at local stores', 'Explore shopping districts'],
        'Adventure': ['Join tours', 'Try outdoor activities', 'Explore surroundings'],
        'Relaxation': ['Visit spa', 'Relax in parks', 'Enjoy scenic views'],
        'Art': ['Visit galleries', 'See street art', 'Attend exhibitions'],
        'Museums': ['Visit main museums', 'Join guided tours', 'See special exhibits']
    }
    
    # Generate exactly the requested number of days
    for day in range(1, days + 1):
        fallback_plan += f"\nDay {day}:\n"
        
        # Select activities based on interests
        day_activities = []
        available_interests = interests[:2]  # Use up to 2 interests per day
        
        for interest in available_interests:
            if interest in basic_activities:
                activity = random.choice(basic_activities[interest])
                day_activities.append(activity)
        
        # Add budget-appropriate text
        budget_text = {
            'Budget': 'Focus on free and affordable activities',
            'Moderate': 'Mix of affordable and premium experiences',
            'Luxury': 'Premium experiences and exclusive access'
        }.get(budget, '')
        
        # Format the day's activities
        fallback_plan += f"Morning: {day_activities[0] if day_activities else 'Explore the area'}\n"
        if len(day_activities) > 1:
            fallback_plan += f"Afternoon/Evening: {day_activities[1]}\n"
        fallback_plan += f"Note: {budget_text}\n"
    
    # Format the fallback plan using the same formatter
    return format_travel_plan(fallback_plan, days)

def format_travel_plan(plan, days):
    """Format travel plan for 1-14 days with flexible activity distribution"""
    # Validate days input
    days = max(1, min(days, 14))
    
    # Initialize day activities dictionary
    day_activities = {day: [] for day in range(1, days + 1)}
    
    # Parse input plan
    current_day = None
    for line in plan.split('\n'):
        line = line.strip()
        if not line:
            continue
        
        # Detect day headers
        if line.lower().startswith('day'):
            try:
                day_num = int(''.join(filter(str.isdigit, line.split()[0])))
                if 1 <= day_num <= days:
                    current_day = day_num
            except ValueError:
                current_day = None
                continue
        
        # Collect activities
        elif current_day and current_day <= days:
            # Split by multiple delimiters, filter meaningful activities
            activities = [
                act.strip() 
                for act in re.split(r'[.;,]', line) 
                if act.strip() and len(act.strip()) > 5
            ]
            
            # Add activities for current day
            for activity in activities:
                if len(day_activities[current_day]) < 4:
                    day_activities[current_day].append(activity)
    
    # Ensure each day has activities
    for day in range(1, days + 1):
        if not day_activities[day]:
            if day == 1:
                day_activities[day].append("Explore city highlights")
            else:
                day_activities[day].append("Continue exploring local attractions")
    
    # Generate formatted plan
    formatted_plan = []
    for day in range(1, days + 1):
        formatted_plan.append(f"### Day {day}\n")
        
        for activity in day_activities[day]:
            formatted_plan.append(f"- {activity}")
        
        formatted_plan.append("\n")
    
    return "\n".join(formatted_plan)


def main():
    st.set_page_config(
        page_title="AI Travel Planner",
        page_icon="✈️",
        layout="wide"
    )
    
    st.title("✈️ AI Travel Planner")
    st.markdown("### Plan your perfect trip with AI assistance!")
    
    # Add training button in sidebar only
    with st.sidebar:
        st.header("Model Management")
        if st.button("Retrain Model"):
            with st.spinner("Training new model... This will take a while..."):
                model, tokenizer = train_model()
                if model is not None:
                    st.session_state['model'] = model
                    st.session_state['tokenizer'] = tokenizer
                    st.success("Model training completed!")
        
        # Add model information
        st.markdown("### Model Information")
        if 'model' in st.session_state:
            st.success("βœ“ Model loaded")
            st.info("""
            This model was trained on travel plans for:
            - 5 destinations
            - 1-14 days duration
            - 3 budget levels
            - 5 interest combinations
            """)
    
        # Load or train model
        if 'model' not in st.session_state:
            with st.spinner("Loading AI model... Please wait..."):
                model, tokenizer = load_or_train_model()
                if model is None or tokenizer is None:
                    st.error("Failed to load/train the AI model. Please try again.")
                    return
                st.session_state.model = model
                st.session_state.tokenizer = tokenizer
    
    # Create two columns for input form
    col1, col2 = st.columns([2, 1])
    
    with col1:
        # Input form in a card-like container
        with st.container():
            st.markdown("### 🎯 Plan Your Trip")
            
            # Destination and Duration row
            dest_col, days_col = st.columns(2)
            with dest_col:
                destination = st.text_input(
                    "🌍 Destination",
                    placeholder="e.g., Paris, Tokyo, New York...",
                    help="Enter the city you want to visit"
                )
            
            with days_col:
                days = st.slider(
                    "πŸ“… Number of days",
                    min_value=1,
                    max_value=14,
                    value=3,
                    help="Select the duration of your trip"
                )
            
            # Budget and Interests row
            budget_col, interests_col = st.columns(2)
            with budget_col:
                budget = st.selectbox(
                    "πŸ’° Budget Level",
                    ["Budget", "Moderate", "Luxury"],
                    help="Select your preferred budget level"
                )
            
            with interests_col:
                interests = st.multiselect(
                    "🎯 Interests",
                    ["Culture", "History", "Food", "Nature", "Shopping", 
                    "Adventure", "Relaxation", "Art", "Museums"],
                    ["Culture", "Food"],
                    help="Select up to three interests to personalize your plan"
                )
    
    with col2:
        # Tips and information
        st.markdown("### πŸ’‘ Travel Tips")
        st.info("""
        - Choose up to 3 interests for best results
        - Consider your travel season
        - Budget levels affect activity suggestions
        - Plans are customizable after generation
        """)
    
    # Generate button centered
    col1, col2, col3 = st.columns([1, 2, 1])
    with col2:
        generate_button = st.button(
            "🎨 Generate Travel Plan",
            type="primary",
            use_container_width=True
        )
    
    if generate_button:
        if not destination:
            st.error("Please enter a destination!")
            return
        
        if not interests:
            st.error("Please select at least one interest!")
            return
        
        if len(interests) > 3:
            st.warning("For best results, please select up to 3 interests.")
        
        with st.spinner("πŸ€– Creating your personalized travel plan..."):
            travel_plan = generate_travel_plan(
                destination,
                days,
                interests,
                budget,
                st.session_state.model,
                st.session_state.tokenizer
            )
            
            # Create an expander for the success message with trip overview
            with st.expander("✨ Your travel plan is ready! Click to see trip overview", expanded=True):
                col1, col2, col3 = st.columns(3)
                with col1:
                    st.metric("Destination", destination)
                with col2:
                    if days == 1:
                        st.metric("Duration", f"{days} day")
                    else:
                        st.metric("Duration", f"{days} days")
                with col3:
                    st.metric("Budget", budget)
                
                st.write("**Selected Interests:**", ", ".join(interests))
            
            # Display the plan in tabs with improved styling
            plan_tab, summary_tab = st.tabs(["πŸ“‹ Detailed Itinerary", "ℹ️ Trip Summary"])
            
            with plan_tab:
                # Add a container for better spacing
                with st.container():
                    # Add trip title
                    st.markdown(f"## 🌍 {days}-Day Trip to {destination}")
                    st.markdown("---")
                    
                    # Display the formatted plan
                    st.markdown(travel_plan)
                    
                    # Add export options in a nice container
                    with st.container():
                        st.markdown("---")
                        col1, col2 = st.columns([1, 4])
                        with col1:
                            st.download_button(
                                label="πŸ“₯ Download Plan",
                                data=travel_plan,
                                file_name=f"travel_plan_{destination.lower().replace(' ', '_')}.md",
                                mime="text/markdown",
                                use_container_width=True
                            )
            
            with summary_tab:
                # Create three columns for summary information with cards
                with st.container():
                    st.markdown("## Trip Overview")
                    sum_col1, sum_col2, sum_col3 = st.columns(3)
                    
                    with sum_col1:
                        with st.container():
                            st.markdown("### πŸ“ Destination Details")
                            st.markdown(f"**Location:** {destination}")
                            if days == 1:
                                st.markdown(f"**Duration:** {days} day")
                            else: 
                                st.markdown(f"**Duration:** {days} days")
                            st.markdown(f"**Budget Level:** {budget}")
                    
                    with sum_col2:
                        with st.container():
                            st.markdown("### 🎯 Trip Focus")
                            st.markdown("**Selected Interests:**")
                            for interest in interests:
                                st.markdown(f"- {interest}")
                    
                    with sum_col3:
                        with st.container():
                            st.markdown("### ⚠️ Travel Tips")
                            st.info(
                                "β€’ Verify opening hours\n"
                                "β€’ Check current prices\n"
                                "β€’ Confirm availability\n"
                                "β€’ Consider seasonal factors"
                            )

if __name__ == "__main__":
    main()