import streamlit as st import yfinance as yf import pandas as pd import numpy as np import feedparser import requests import base64 from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense, Dropout # Function to fetch cryptocurrency data def get_crypto_data(symbol, period="30d", interval="1h"): crypto = yf.Ticker(f"{symbol}-USD") data = crypto.history(period=period, interval=interval) return data # Function to calculate RSI def calculate_rsi(data, period=14): delta = data['Close'].diff() gain = (delta.where(delta > 0, 0)).rolling(window=period).mean() loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean() rs = gain / loss rsi = 100 - (100 / (1 + rs)) return rsi # Function to calculate Bollinger Bands def calculate_bollinger_bands(data, period=20, std_dev=2): sma = data['Close'].rolling(window=period).mean() std = data['Close'].rolling(window=period).std() upper_band = sma + (std * std_dev) lower_band = sma - (std * std_dev) return upper_band, lower_band # Function to calculate MACD def calculate_macd(data, short_window=12, long_window=26, signal_window=9): short_ema = data['Close'].ewm(span=short_window, adjust=False).mean() long_ema = data['Close'].ewm(span=long_window, adjust=False).mean() macd = short_ema - long_ema signal = macd.ewm(span=signal_window, adjust=False).mean() return macd, signal # Function to calculate EMA def calculate_ema(data, period=20): return data['Close'].ewm(span=period, adjust=False).mean() # Function to calculate OBV def calculate_obv(data): obv = (np.sign(data['Close'].diff()) * data['Volume']).cumsum() return obv # Function to calculate probabilities for the next 12 hours def calculate_probabilities(data): # Calculate indicators on the entire dataset data['RSI'] = calculate_rsi(data) data['Upper_Band'], data['Lower_Band'] = calculate_bollinger_bands(data) data['MACD'], data['MACD_Signal'] = calculate_macd(data) data['EMA_50'] = calculate_ema(data, period=50) data['EMA_200'] = calculate_ema(data, period=200) data['OBV'] = calculate_obv(data) # Use the most recent values for predictions probabilities = { "RSI": {"Value": data['RSI'].iloc[-1], "Pump": 0, "Dump": 0}, "Bollinger Bands": {"Value": data['Close'].iloc[-1], "Pump": 0, "Dump": 0}, "MACD": {"Value": data['MACD'].iloc[-1], "Pump": 0, "Dump": 0}, "EMA": {"Value": data['EMA_50'].iloc[-1], "Pump": 0, "Dump": 0}, "OBV": {"Value": data['OBV'].iloc[-1], "Pump": 0, "Dump": 0}, } # RSI rsi = data['RSI'].iloc[-1] if rsi < 25: probabilities["RSI"]["Pump"] = 90 # Strong Pump elif 25 <= rsi < 30: probabilities["RSI"]["Pump"] = 60 # Moderate Pump elif 70 < rsi <= 75: probabilities["RSI"]["Dump"] = 60 # Moderate Dump elif rsi > 75: probabilities["RSI"]["Dump"] = 90 # Strong Dump # Bollinger Bands close = data['Close'].iloc[-1] upper_band = data['Upper_Band'].iloc[-1] lower_band = data['Lower_Band'].iloc[-1] if close <= lower_band: probabilities["Bollinger Bands"]["Pump"] = 90 # Strong Pump elif lower_band < close <= lower_band * 1.05: probabilities["Bollinger Bands"]["Pump"] = 60 # Moderate Pump elif upper_band * 0.95 <= close < upper_band: probabilities["Bollinger Bands"]["Dump"] = 60 # Moderate Dump elif close >= upper_band: probabilities["Bollinger Bands"]["Dump"] = 90 # Strong Dump # MACD macd = data['MACD'].iloc[-1] macd_signal = data['MACD_Signal'].iloc[-1] if macd > macd_signal and macd > 0: probabilities["MACD"]["Pump"] = 90 # Strong Pump elif macd > macd_signal and macd <= 0: probabilities["MACD"]["Pump"] = 60 # Moderate Pump elif macd < macd_signal and macd >= 0: probabilities["MACD"]["Dump"] = 60 # Moderate Dump elif macd < macd_signal and macd < 0: probabilities["MACD"]["Dump"] = 90 # Strong Dump # EMA ema_short = data['EMA_50'].iloc[-1] ema_long = data['EMA_200'].iloc[-1] if ema_short > ema_long and close > ema_short: probabilities["EMA"]["Pump"] = 90 # Strong Pump elif ema_short > ema_long and close <= ema_short: probabilities["EMA"]["Pump"] = 60 # Moderate Pump elif ema_short < ema_long and close >= ema_short: probabilities["EMA"]["Dump"] = 60 # Moderate Dump elif ema_short < ema_long and close < ema_short: probabilities["EMA"]["Dump"] = 90 # Strong Dump # OBV obv = data['OBV'].iloc[-1] if obv > 100000: probabilities["OBV"]["Pump"] = 90 # Strong Pump elif 50000 < obv <= 100000: probabilities["OBV"]["Pump"] = 60 # Moderate Pump elif -100000 <= obv < -50000: probabilities["OBV"]["Dump"] = 60 # Moderate Dump elif obv < -100000: probabilities["OBV"]["Dump"] = 90 # Strong Dump # Normalize Pump and Dump probabilities to sum to 100% for indicator in probabilities: pump_prob = probabilities[indicator]["Pump"] dump_prob = probabilities[indicator]["Dump"] # If pump probability is set, normalize dump if pump_prob > 0: probabilities[indicator]["Dump"] = 100 - pump_prob # If dump probability is set, normalize pump if dump_prob > 0: probabilities[indicator]["Pump"] = 100 - dump_prob return probabilities, data.iloc[-1] # Function to calculate weighted probabilities def calculate_weighted_probabilities(probabilities): weightages = { "RSI": 0.20, "Bollinger Bands": 0.20, "MACD": 0.25, "EMA": 0.15, "OBV": 0.20 } # Initialize final probabilities final_probabilities = {"Pump": 0, "Dump": 0} # Calculate weighted probabilities for indicator, values in probabilities.items(): pump_prob = values["Pump"] * weightages[indicator] dump_prob = values["Dump"] * weightages[indicator] final_probabilities["Pump"] += pump_prob final_probabilities["Dump"] += dump_prob # Normalize the final probabilities to ensure they sum to 100% total = final_probabilities["Pump"] + final_probabilities["Dump"] # Handle cases where the total sum of probabilities is zero if total == 0: final_probabilities["Pump"] = 50 final_probabilities["Dump"] = 50 else: final_probabilities["Pump"] = (final_probabilities["Pump"] / total) * 100 final_probabilities["Dump"] = (final_probabilities["Dump"] / total) * 100 # Debugging the final probabilities to ensure they sum up to 100% print(f"Final Pump Probability: {final_probabilities['Pump']}%") print(f"Final Dump Probability: {final_probabilities['Dump']}%") return final_probabilities # Function to fetch news data from Google News RSS feeds def fetch_news(coin_name): try: url = f"https://news.google.com/rss/search?q={coin_name}+cryptocurrency" feed = feedparser.parse(url) news_items = [] for entry in feed.entries[:5]: # Limit to 5 news items news_items.append({ "title": entry.title, "link": entry.link, "published": entry.published, }) return news_items except Exception as e: st.error(f"Error fetching news: {e}") return [] # Prepare data for LSTM Model def prepare_lstm_data(df, seq_len=60): data = df['Price'].values.reshape(-1, 1) scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(data) sequences, labels = [], [] for i in range(len(scaled_data) - seq_len): sequences.append(scaled_data[i:i + seq_len]) labels.append(scaled_data[i + seq_len]) return np.array(sequences), np.array(labels), scaler # Build and train LSTM model def build_lstm_model(input_shape): model = Sequential([ LSTM(units=50, return_sequences=True, input_shape=input_shape), Dropout(0.2), LSTM(units=50, return_sequences=False), Dropout(0.2), Dense(units=25), Dense(units=1) ]) model.compile(optimizer='adam', loss='mean_squared_error') return model # Calculate prediction based of LTSM model learning def calculate_prediction_with_ltsm(symbol="BTC", period="5d", interval="5m"): st.write("**Fetched Data...") data = get_crypto_data(symbol, period, interval) prices = [(pd.to_datetime(index, unit='m'), price) for index, price in data['Close'].items()] df = pd.DataFrame(prices, columns=['Date', 'Price']) st.write("**Preparing data for LTSM Model training......(processing)...") X, Y, scaler = prepare_lstm_data(df) st.write("**Build LTSM Model with X shape data.........(processing)...") model = build_lstm_model((X.shape[1], 1)) # Train the model st.write("**Train LTSM Model with X,Y shape data with batch_size(32), epochs(10)............(processing)...") model.fit(X, Y, batch_size=32, epochs=10) # Predict the next price point st.write("**Sequence LTSM Model with X,Y shape data with batch_size(32), epochs(10)...............(processing)...") last_sequence = X[-1].reshape(1, X.shape[1], 1) st.write("**Predict realtime price with LTSM Model trained with X,Y shape data with batch_size(32), epochs(10)..................(processing)...") scaled_prediction = model.predict(last_sequence) predicted_price = scaler.inverse_transform(scaled_prediction) return predicted_price # Streamlit App st.set_page_config(page_title="Crypto Insights ", layout="wide") # Add styled title with specific color st.markdown( """

Crypto Vision

""", unsafe_allow_html=True ) # Add styled subtitle with lines on both sides and reduced gap st.markdown( """

MARKET ANALYZER
""", unsafe_allow_html=True ) # Function to add a background image to the app def add_background_to_main(image_file): page_bg_img = f""" """ st.markdown(page_bg_img, unsafe_allow_html=True) # Function to encode the image to Base64 def get_base64_of_image(image_path): with open(image_path, "rb") as img_file: return base64.b64encode(img_file.read()).decode() # Add the background image (ensure the image file is in the correct path) image_path = "black.jpeg" # Replace with your image file name try: encoded_image = get_base64_of_image(image_path) add_background_to_main(encoded_image) except FileNotFoundError: st.warning(f"Background image '{image_path}' not found. Please check the file path.") st.markdown(""" Welcome to the "Crypto Vision". This tool provides real-time predictions and insights on cryptocurrency price movements using advanced technical indicators like RSI, Bollinger Bands, MACD, and more. Simply enter the cryptocurrency symbol, and our tool will analyze the market data, calculate indicators, and provide you with the probabilities of price movements (pump or dump). Stay ahead in your crypto trading with this powerful tool! """) # Add CSS to make the sidebar fixed and apply hover effect on buttons st.markdown( """ """, unsafe_allow_html=True ) # Sidebar for user input st.sidebar.header("Cryptocurrency Symbol") symbol = st.sidebar.text_input("Enter Cryptocurrency Symbol (e.g., BTC):", "BTC") # Add buttons for navigation show_news_button = st.sidebar.button("Show Latest News") show_data_button = st.sidebar.button("Show Data and Indicators") predict_lstm_button = st.sidebar.button("Predict by training LSTM Model") # Fetch data and news when the button is clicked if show_data_button: if symbol: # Fetch data data = get_crypto_data(symbol) if data.empty: st.error(f"No data found for {symbol}. Please check the symbol and try again.") else: # Display fetched data st.write("**Fetched Data:**") st.dataframe(data.tail()) # Ensure the DataFrame has enough rows if len(data) < 20: st.warning(f"Not enough data to calculate indicators. Only {len(data)} rows available. Please try a longer period.") else: # Calculate probabilities for the next 12 hours probabilities, recent_data = calculate_probabilities(data) # Create a DataFrame for the indicator values indicator_values = { "Indicator": ["RSI", "Bollinger Bands", "MACD", "EMA", "OBV"], "Value": [probabilities["RSI"]["Value"], probabilities["Bollinger Bands"]["Value"], probabilities["MACD"]["Value"], probabilities["EMA"]["Value"], probabilities["OBV"]["Value"]], } # Convert dictionary to a DataFrame df_indicators = pd.DataFrame(indicator_values) # Display indicator values in table format st.write("### **Indicators and Probabilities Table**:") st.dataframe(df_indicators) # Calculate weighted combined probabilities weighted_probabilities = calculate_weighted_probabilities(probabilities) # Display final combined probability predictions st.write("### **Final Predicted Probabilities for the Next 12 Hours:**") st.write(f"- **Pump Probability**: {weighted_probabilities['Pump']:.2f}%") st.write(f"- **Dump Probability**: {weighted_probabilities['Dump']:.2f}%") elif show_news_button: if symbol: # Fetch news news_items = fetch_news(symbol) if news_items: st.write("### Latest News:") for news_item in news_items: st.markdown(f"**{news_item['title']}**: [Read More]({news_item['link']})") st.write(f"Published on: {news_item['published']}") else: st.warning(f"No news found for {symbol}. Please try again later.") elif predict_lstm_button: if symbol: # Call the LSTM prediction function based on last 5 days with 5 interval of closing data st.markdown( """

Final Predicted Value Learned by training a LSTM Model

***Based on the last 5 days with 5-minute intervals of closing data***

""", unsafe_allow_html=True ) period = "5d" interval = "5m" predicted_price = calculate_prediction_with_ltsm(symbol, period, interval) #st.write("### **Final Predicted value by learned LTSM model based on last 5 days with 5 interval of closing data** ###") #st.write(f"**Predicted next realtime price: ${predicted_price[0][0]:.10f}**") st.markdown( f"""

Predicted Next Realtime Price: ${predicted_price[0][0]:.10f}

""", unsafe_allow_html=True )