Spaces:
Sleeping
Sleeping
File size: 30,280 Bytes
58abf68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 |
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
""" Tokenization classes for IndoNLG model."""
from typing import Dict, List, Optional, Tuple, Union
from transformers import PreTrainedTokenizer, BatchEncoding
from collections.abc import Mapping
from transformers.utils import (
PaddingStrategy,
TensorType,
is_tf_available,
is_torch_available,
logging,
to_py_obj,
)
import numpy as np
import sentencepiece as spm
from transformers.utils.generic import _is_tensorflow, _is_torch
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"indobenchmark/indobart": "https://huggingface.co/indobenchmark/indobart/resolve/main/sentencepiece.bpe.model",
"indobenchmark/indogpt": "https://huggingface.co/indobenchmark/indogpt/resolve/main/sentencepiece.bpe.model",
"indobenchmark/indobart-v2": "https://huggingface.co/indobenchmark/indobart-v2/resolve/main/sentencepiece.bpe.model"
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"indobenchmark/indobart": 768,
"indobenchmark/indogpt": 768,
"indobenchmark/indobart-v2": 768
}
SHARED_MODEL_IDENTIFIERS = [
# Load with
"indobenchmark/indobart",
"indobenchmark/indogpt",
"indobenchmark/indobart-v2"
]
SPIECE_UNDERLINE = "▁"
# Define type aliases and NamedTuples
TextInput = str
PreTokenizedInput = List[str]
EncodedInput = List[int]
TextInputPair = Tuple[str, str]
PreTokenizedInputPair = Tuple[List[str], List[str]]
EncodedInputPair = Tuple[List[int], List[int]]
class IndoNLGTokenizer(PreTrainedTokenizer):
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels']
input_error_message = "text input must of type `str` (single example), `List[str]` (batch of examples)."
def __init__(
self,
vocab_file,
decode_special_token=True,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
additional_special_tokens=[],
**kwargs
):
self.sp_model = spm.SentencePieceProcessor()
self.sp_model.Load(str(vocab_file))
self.vocab_file = vocab_file
self.decode_special_token = decode_special_token
self.model_max_length = 1024
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
self.special_tokens_to_ids = {
"[javanese]": 40000,
"[sundanese]": 40001,
"[indonesian]": 40002,
"<mask>": 40003
}
self.special_ids_to_tokens = {v: k for k, v in self.special_tokens_to_ids.items()}
# Giving a warning when exists additional_special_tokens outside of dedicated special tokens.
for token in additional_special_tokens:
if token not in self.special_tokens_to_ids:
print(f"Warning: Additional special tokens will be ignored in IndoNLGTokenizer.")
break
# Store Language token ID
self.javanese_token = '[javanese]'
self.javanese_token_id = 40000
self.sundanese_token = '[sundanese]'
self.sundanese_token_id = 40001
self.indonesian_token = '[indonesian]'
self.indonesian_token_id = 40002
super().__init__(
vocab_file=vocab_file,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
self.special_token_ids = [
self.bos_token_id, self.eos_token_id, self.sep_token_id, self.cls_token_id,
self.unk_token_id, self.pad_token_id, self.mask_token_id,
self.javanese_token_id, self.sundanese_token_id, self.indonesian_token_id
]
def prepare_input_for_generation(self, inputs, model_type='indobart', lang_token='[indonesian]', decoder_inputs=None,
decoder_lang_token='[indonesian]', padding='longest', return_tensors=None):
"""
Build model inputs for a specified `model_type`. There are two possible `model_type`, i.e., indobart and indogpt.
When `model_type` is indogpt, `lang_token`, `decoder_inputs`, and `decoder_lang_token` parameters will be ignored
and the input will be encoded in the gpt2 sequence format as follow:
- indogpt sequence: ``<s> X``
When `model_type` is indobart, `inputs` and `lang_token` are used as the sequence and language identifier for the indobart encoder,
while `decoder_inputs` and `decoder_lang_token` are used as the sequence and language identifier of the decoder
- indobart encoder sequence: ``X </s> <lang_token_id>``
- indobart decoder sequences: ``<decoder_lang_token_id> X </s>``
Args:
inputs (:obj:`str` or `List[str]`):
text sequence or list of text sequences to be tokenized.
model_type (:obj:`str`, defaults to :obj:`indobart`):
model type to determine the format of the tokenized sequence. Valid values are `indobart` and `indogpt`.
lang_token (:obj:`str`, defaults to :obj:`[indonesian]`):
language token to determine the format of the tokenized sequence. Valid values are `[indonesian]`, `[sundanese], and [javanese]`.
decoder_inputs (:obj:`str` or `List[str]`, `optional`):
decoder text sequence or list of text sequences to be tokenized.
decoder_lang_token (:obj:`str`, defaults to :obj:`[indonesian]`):
decoder language token to determine the format of the tokenized sequence. Valid values are `[indonesian]`, `[sundanese], and [javanese]`.
padding (:obj:`str`, defaults to :obj:`longest`):
padding strategy to pad the tokenized sequences. Valid values are `longest`, `max_length`, and `do_not_pad`.
return_tensors (:obj:`str`, defaults to :obj:`None`):
Returned tensor type of the tokenized sequence. When set to `None`, the return type will be List[int]. Valid values are `None`, `pt`, and `tf`
Returns:
:obj:`Dict`: Dictionary with `input_ids`, `attention_mask`, `decoder_input_ids` (optional), and `decoder_attention_mask` (optional)
"""
if model_type == 'indogpt':
# Process indogpt input
if type(inputs) == str:
return self(f'<s> {inputs}', padding=padding, return_tensors=return_tensors)
elif type(inputs) == list:
if len(inputs) == 0 or type(inputs[0]) != str:
raise ValueError(IndoNLGTokenizer.input_error_message)
else:
return self([f'<s> {input_data}' for input_data in inputs], padding=padding, return_tensors=return_tensors)
else:
raise ValueError(IndoNLGTokenizer.input_error_message)
elif model_type == 'indobart':
# Process encoder input
if lang_token not in self.special_tokens_to_ids:
raise ValueError(f"Unknown lang_token `{lang_token}`, lang_token must be either `[javanese]`, `[sundanese]`, or `[indonesian]`")
elif type(inputs) == list:
if len(inputs) == 0 or type(inputs[0]) != str:
raise ValueError(IndoNLGTokenizer.input_error_message)
elif type(inputs) != str:
raise ValueError(IndoNLGTokenizer.input_error_message)
lang_id = self.special_tokens_to_ids[lang_token]
input_batch = self(inputs, return_attention_mask=False)
if type(inputs) == str:
input_batch['input_ids'] = [self.bos_token_id] + input_batch['input_ids'] + [self.eos_token_id, lang_id]
else:
input_batch['input_ids'] = list(map(lambda input_ids: [self.bos_token_id] + input_ids + [self.eos_token_id, lang_id], input_batch['input_ids']))
if decoder_inputs is None:
# Return encoder input
return self.pad(input_batch, return_tensors=return_tensors)
else:
# Process decoder input
if decoder_lang_token not in self.special_tokens_to_ids:
raise ValueError(f"Unknown decoder_lang_token `{decoder_lang_token}`, decoder_lang_token must be either `[javanese]`, `[sundanese]`, or `[indonesian]`")
elif type(decoder_inputs) == list:
if len(decoder_inputs) == 0:
raise ValueError(IndoNLGTokenizer.input_error_message)
elif type(decoder_inputs[0]) != str:
raise ValueError(IndoNLGTokenizer.input_error_message)
elif type(decoder_inputs) != str:
raise ValueError(IndoNLGTokenizer.input_error_message)
decoder_lang_id = self.special_tokens_to_ids[decoder_lang_token]
decoder_input_batch = self(decoder_inputs, return_attention_mask=False)
if type(decoder_inputs) == str:
labels = [self.bos_token_id] + decoder_input_batch['input_ids'] + [self.eos_token_id, decoder_lang_id]
decoder_input_batch['input_ids'] = [decoder_lang_id, self.bos_token_id] + decoder_input_batch['input_ids'] + [self.eos_token_id]
else:
labels = list(map(lambda input_ids: [self.bos_token_id] + input_ids + [self.eos_token_id, decoder_lang_id], decoder_input_batch['input_ids']))
decoder_input_batch['input_ids'] = list(map(lambda input_ids: [decoder_lang_id, self.bos_token_id] + input_ids + [self.eos_token_id], decoder_input_batch['input_ids']))
# Padding
input_batch = self.pad(input_batch, return_tensors=return_tensors)
decoder_input_batch = self.pad(decoder_input_batch, return_tensors=return_tensors)
labels = self.pad({'input_ids': labels}, return_tensors=return_tensors)['input_ids']
if not isinstance(labels, (list, tuple)):
labels[labels == self.pad_token_id] = -100
else:
labels = list(map(lambda x: -100 if x == self.pad_token_id else x, labels))
# Store into a single dict
input_batch['decoder_input_ids'] = decoder_input_batch['input_ids']
input_batch['decoder_attention_mask'] = decoder_input_batch['attention_mask']
input_batch['labels'] = labels
return input_batch
def __len__(self):
return max(self.special_ids_to_tokens) + 1
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer ``prepare_for_model`` method.
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
@property
def vocab_size(self):
return 4 + len(self.sp_model)
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text: str) -> List[str]:
return self.sp_model.encode(text.lower(), out_type=str)
def convert_ids_to_tokens(
self, ids: Union[int, List[int]], skip_special_tokens: bool = False
) -> Union[str, List[str]]:
"""
Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and
added tokens.
Args:
ids (`int` or `List[int]`):
The token id (or token ids) to convert to tokens.
skip_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to remove special tokens in the decoding.
Returns:
`str` or `List[str]`: The decoded token(s).
"""
if isinstance(ids, int):
if ids not in self.added_tokens_decoder or ids in self.special_tokens_to_ids:
return self._convert_id_to_token(ids, skip_special_tokens=skip_special_tokens)
else:
return self.added_tokens_decoder[ids].content
tokens = []
for index in ids:
index = int(index)
if skip_special_tokens and index in (self.all_special_ids + list(self.special_tokens_to_ids.values())):
continue
if index not in self.added_tokens_decoder or index in self.special_tokens_to_ids:
tokens.append(self._convert_id_to_token(index, skip_special_tokens=skip_special_tokens))
else:
tokens.append(self.added_tokens_decoder[index].content)
return tokens
def _convert_token_to_id(self, token):
""" Converts a token (str) in an id using the vocab. """
if token in self.special_tokens_to_ids:
return self.special_tokens_to_ids[token]
return self.sp_model.PieceToId(token)
def _convert_id_to_token(self, index, skip_special_tokens=False):
"""Converts an index (integer) in a token (str) using the vocab."""
if skip_special_tokens and index in self.special_token_ids:
return ''
if index in self.special_ids_to_tokens:
return self.special_ids_to_tokens[index]
token = self.sp_model.IdToPiece(index)
if '<0x' in token:
char_rep = chr(int(token[1:-1], 0))
if char_rep.isprintable():
return char_rep
return token
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def decode(self, inputs, skip_special_tokens=False, **kwargs):
outputs = super().decode(inputs, skip_special_tokens=skip_special_tokens, **kwargs)
return outputs.replace(' ','').replace(SPIECE_UNDERLINE, ' ')
def _pad_decoder(
self,
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
max_length: Optional[int] = None,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
) -> dict:
"""
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
Args:
encoded_inputs:
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
max_length: maximum length of the returned list and optionally padding length (see below).
Will truncate by taking into account the special tokens.
padding_strategy: PaddingStrategy to use for padding.
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- PaddingStrategy.DO_NOT_PAD: Do not pad
The tokenizer padding sides are defined in self.padding_side:
- 'left': pads on the left of the sequences
- 'right': pads on the right of the sequences
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
>= 7.5 (Volta).
return_attention_mask:
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
"""
# Load from model defaults
if return_attention_mask is None:
return_attention_mask = "decoder_attention_mask" in self.model_input_names
required_input = encoded_inputs[self.model_input_names[2]]
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
# Initialize attention mask if not present.
if return_attention_mask and "decoder_attention_mask" not in encoded_inputs:
encoded_inputs["decoder_attention_mask"] = [1] * len(required_input)
if needs_to_be_padded:
difference = max_length - len(required_input)
if self.padding_side == "right":
if return_attention_mask:
encoded_inputs["decoder_attention_mask"] = encoded_inputs["decoder_attention_mask"] + [0] * difference
if "decoder_token_type_ids" in encoded_inputs:
encoded_inputs["decoder_token_type_ids"] = (
encoded_inputs["decoder_token_type_ids"] + [self.pad_token_type_id] * difference
)
if "decoder_special_tokens_mask" in encoded_inputs:
encoded_inputs["decoder_special_tokens_mask"] = encoded_inputs["decoder_special_tokens_mask"] + [1] * difference
encoded_inputs[self.model_input_names[2]] = required_input + [self.pad_token_id] * difference
label_input = encoded_inputs[self.model_input_names[4]]
encoded_inputs[self.model_input_names[4]] = label_input + [-100] * difference
elif self.padding_side == "left":
if return_attention_mask:
encoded_inputs["decoder_attention_mask"] = [0] * difference + encoded_inputs["decoder_attention_mask"]
if "decoder_token_type_ids" in encoded_inputs:
encoded_inputs["decoder_token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
"decoder_token_type_ids"
]
if "decoder_special_tokens_mask" in encoded_inputs:
encoded_inputs["decoder_special_tokens_mask"] = [1] * difference + encoded_inputs["decoder_special_tokens_mask"]
encoded_inputs[self.model_input_names[2]] = [self.pad_token_id] * difference + required_input
label_input = encoded_inputs[self.model_input_names[4]]
encoded_inputs[self.model_input_names[4]] = label_input + [-100] * difference
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
return encoded_inputs
def pad(self,
encoded_inputs: Union[
BatchEncoding,
List[BatchEncoding],
Dict[str, EncodedInput],
Dict[str, List[EncodedInput]],
List[Dict[str, EncodedInput]],
],
padding: Union[bool, str, PaddingStrategy] = True,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
verbose: bool = True,
) -> BatchEncoding:
"""
Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
in the batch.
Padding side (left/right) padding token ids are defined at the tokenizer level (with `self.padding_side`,
`self.pad_token_id` and `self.pad_token_type_id`)
<Tip>
If the `encoded_inputs` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of
PyTorch tensors, you will lose the specific device of your tensors however.
</Tip>
Args:
encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`):
Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of
tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str,
List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader
collate function.
Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see
the note above for the return type.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
>= 7.5 (Volta).
return_attention_mask (`bool`, *optional*):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
verbose (`bool`, *optional*, defaults to `True`):
Whether or not to print more information and warnings.
"""
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping):
encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()}
# The model's main input name, usually `input_ids`, has be passed for padding
if self.model_input_names[0] not in encoded_inputs:
raise ValueError(
"You should supply an encoding or a list of encodings to this method "
f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
)
required_input = encoded_inputs[self.model_input_names[0]]
if not required_input:
if return_attention_mask:
encoded_inputs["attention_mask"] = []
return encoded_inputs
# If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
first_element = required_input[0]
if isinstance(first_element, (list, tuple)):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
for item in required_input:
if len(item) != 0:
first_element = item[0]
break
# At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
if not isinstance(first_element, (int, list, tuple)):
if is_tf_available() and _is_tensorflow(first_element):
return_tensors = "tf" if return_tensors is None else return_tensors
elif is_torch_available() and _is_torch(first_element):
return_tensors = "pt" if return_tensors is None else return_tensors
elif isinstance(first_element, np.ndarray):
return_tensors = "np" if return_tensors is None else return_tensors
else:
raise ValueError(
f"type of {first_element} unknown: {type(first_element)}. "
f"Should be one of a python, numpy, pytorch or tensorflow object."
)
for key, value in encoded_inputs.items():
encoded_inputs[key] = to_py_obj(value)
# Convert padding_strategy in PaddingStrategy
padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
padding=padding, max_length=max_length, verbose=verbose
)
required_input = encoded_inputs[self.model_input_names[0]]
if required_input and not isinstance(required_input[0], (list, tuple)):
encoded_inputs = self._pad(
encoded_inputs,
max_length=max_length,
padding_strategy=padding_strategy,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
batch_size = len(required_input)
assert all(
len(v) == batch_size for v in encoded_inputs.values()
), "Some items in the output dictionary have a different batch size than others."
if padding_strategy == PaddingStrategy.LONGEST:
max_length = max(len(inputs) for inputs in required_input)
padding_strategy = PaddingStrategy.MAX_LENGTH
batch_outputs = {}
for i in range(batch_size):
inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
outputs = self._pad(
inputs,
max_length=max_length,
padding_strategy=padding_strategy,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
# Handle decoder_input_ids
if self.model_input_names[2] in outputs:
max_decoder_length = max(len(inputs) for inputs in encoded_inputs[self.model_input_names[2]])
outputs = self._pad_decoder(
outputs,
max_length=max_decoder_length,
padding_strategy=padding_strategy,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
for key, value in outputs.items():
if key not in batch_outputs:
batch_outputs[key] = []
batch_outputs[key].append(value)
return BatchEncoding(batch_outputs, tensor_type=return_tensors) |