File size: 30,280 Bytes
58abf68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
""" Tokenization classes for IndoNLG model."""

from typing import Dict, List, Optional, Tuple, Union
from transformers import PreTrainedTokenizer, BatchEncoding

from collections.abc import Mapping
from transformers.utils import (
    PaddingStrategy,
    TensorType,
    is_tf_available,
    is_torch_available,
    logging,
    to_py_obj,
)
import numpy as np
import sentencepiece as spm
from transformers.utils.generic import _is_tensorflow, _is_torch

logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}

PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "indobenchmark/indobart": "https://huggingface.co/indobenchmark/indobart/resolve/main/sentencepiece.bpe.model",
        "indobenchmark/indogpt": "https://huggingface.co/indobenchmark/indogpt/resolve/main/sentencepiece.bpe.model",
        "indobenchmark/indobart-v2": "https://huggingface.co/indobenchmark/indobart-v2/resolve/main/sentencepiece.bpe.model"
    }
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "indobenchmark/indobart": 768,
    "indobenchmark/indogpt": 768,
    "indobenchmark/indobart-v2": 768
}

SHARED_MODEL_IDENTIFIERS = [
    # Load with
    "indobenchmark/indobart",
    "indobenchmark/indogpt",
    "indobenchmark/indobart-v2"
]

SPIECE_UNDERLINE = "▁"

# Define type aliases and NamedTuples
TextInput = str
PreTokenizedInput = List[str]
EncodedInput = List[int]
TextInputPair = Tuple[str, str]
PreTokenizedInputPair = Tuple[List[str], List[str]]
EncodedInputPair = Tuple[List[int], List[int]]

class IndoNLGTokenizer(PreTrainedTokenizer):
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
    model_input_names=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels']
    input_error_message = "text input must of type `str` (single example), `List[str]` (batch of examples)."

    def __init__(
        self,
        vocab_file,
        decode_special_token=True,
        bos_token="<s>",
        eos_token="</s>",
        sep_token="</s>",
        cls_token="<s>",
        unk_token="<unk>",
        pad_token="<pad>",
        mask_token="<mask>",
        additional_special_tokens=[],
        **kwargs
    ):
        self.sp_model = spm.SentencePieceProcessor()
        self.sp_model.Load(str(vocab_file))
        self.vocab_file = vocab_file
        self.decode_special_token = decode_special_token
        self.model_max_length = 1024
        
        # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
        # sentencepiece vocabulary (this is the case for <s> and </s>
        self.special_tokens_to_ids = {
            "[javanese]": 40000, 
            "[sundanese]": 40001, 
            "[indonesian]": 40002,
            "<mask>": 40003
        }
        self.special_ids_to_tokens = {v: k for k, v in self.special_tokens_to_ids.items()}
        
        # Giving a warning when exists additional_special_tokens outside of dedicated special tokens.
        for token in additional_special_tokens:
            if token not in self.special_tokens_to_ids:
                print(f"Warning: Additional special tokens will be ignored in IndoNLGTokenizer.")
                break
        
        # Store Language token ID
        self.javanese_token = '[javanese]'
        self.javanese_token_id = 40000
        self.sundanese_token = '[sundanese]'
        self.sundanese_token_id = 40001
        self.indonesian_token = '[indonesian]'
        self.indonesian_token_id = 40002
        
        super().__init__(
            vocab_file=vocab_file,
            bos_token=bos_token,
            eos_token=eos_token,
            unk_token=unk_token,
            sep_token=sep_token,
            cls_token=cls_token,
            pad_token=pad_token,
            mask_token=mask_token,
            additional_special_tokens=additional_special_tokens,
            **kwargs,
        )
        self.special_token_ids = [
            self.bos_token_id, self.eos_token_id, self.sep_token_id, self.cls_token_id, 
            self.unk_token_id, self.pad_token_id, self.mask_token_id,
            self.javanese_token_id, self.sundanese_token_id, self.indonesian_token_id
        ]
    
    def prepare_input_for_generation(self, inputs, model_type='indobart', lang_token='[indonesian]', decoder_inputs=None,
                                             decoder_lang_token='[indonesian]', padding='longest', return_tensors=None):
        """
        Build model inputs for a specified `model_type`. There are two possible `model_type`, i.e., indobart and indogpt.
        
        When `model_type` is indogpt, `lang_token`, `decoder_inputs`, and `decoder_lang_token` parameters will be ignored 
        and the input will be encoded in the gpt2 sequence format as follow: 
        
        - indogpt sequence: ``<s> X``
        
        When `model_type` is indobart, `inputs` and `lang_token` are used as the sequence and language identifier for the indobart encoder, 
        while `decoder_inputs` and `decoder_lang_token` are used as the sequence and language identifier of the decoder
        
        - indobart encoder sequence: ``X </s> <lang_token_id>``
        - indobart decoder sequences: ``<decoder_lang_token_id> X </s>``

        Args:
            inputs (:obj:`str` or `List[str]`):
                text sequence or list of text sequences to be tokenized.
            model_type (:obj:`str`, defaults to :obj:`indobart`):
                model type to determine the format of the tokenized sequence. Valid values are `indobart` and `indogpt`.
            lang_token (:obj:`str`, defaults to :obj:`[indonesian]`):
                language token to determine the format of the tokenized sequence. Valid values are `[indonesian]`, `[sundanese], and [javanese]`.
            decoder_inputs (:obj:`str` or `List[str]`, `optional`):
                decoder text sequence or list of text sequences to be tokenized.
            decoder_lang_token (:obj:`str`, defaults to :obj:`[indonesian]`):
                decoder language token to determine the format of the tokenized sequence. Valid values are `[indonesian]`, `[sundanese], and [javanese]`.
            padding (:obj:`str`, defaults to :obj:`longest`):
                padding strategy to pad the tokenized sequences. Valid values are `longest`, `max_length`, and `do_not_pad`.
            return_tensors (:obj:`str`, defaults to :obj:`None`):
                Returned tensor type of the tokenized sequence. When set to `None`, the return type will be List[int]. Valid values are `None`, `pt`, and `tf`

        Returns:
            :obj:`Dict`: Dictionary with `input_ids`, `attention_mask`, `decoder_input_ids` (optional), and `decoder_attention_mask` (optional)
        """        
        if model_type == 'indogpt':
            # Process indogpt input
            if type(inputs) == str:
                 return self(f'<s> {inputs}', padding=padding, return_tensors=return_tensors)
            elif type(inputs) == list:
                if len(inputs) == 0 or type(inputs[0]) != str:
                    raise ValueError(IndoNLGTokenizer.input_error_message)
                else:
                    return self([f'<s> {input_data}' for input_data in inputs], padding=padding, return_tensors=return_tensors)
            else:
                raise ValueError(IndoNLGTokenizer.input_error_message)
        elif model_type == 'indobart':
                                     
            # Process encoder input
            if lang_token not in self.special_tokens_to_ids:
                raise ValueError(f"Unknown lang_token `{lang_token}`, lang_token must be either `[javanese]`, `[sundanese]`, or `[indonesian]`")  
            elif type(inputs) == list:
                if len(inputs) == 0 or type(inputs[0]) != str:
                    raise ValueError(IndoNLGTokenizer.input_error_message)
            elif type(inputs) != str:
                raise ValueError(IndoNLGTokenizer.input_error_message)
                
            lang_id = self.special_tokens_to_ids[lang_token]
            input_batch = self(inputs, return_attention_mask=False)
            if type(inputs) == str:
                input_batch['input_ids'] = [self.bos_token_id] + input_batch['input_ids'] + [self.eos_token_id, lang_id]
            else:
                input_batch['input_ids'] = list(map(lambda input_ids: [self.bos_token_id] + input_ids + [self.eos_token_id, lang_id], input_batch['input_ids']))
            
            if decoder_inputs is None:
                # Return encoder input
                return self.pad(input_batch, return_tensors=return_tensors)
            else:
                # Process decoder input
                if decoder_lang_token not in self.special_tokens_to_ids:
                    raise ValueError(f"Unknown decoder_lang_token `{decoder_lang_token}`, decoder_lang_token must be either `[javanese]`, `[sundanese]`, or `[indonesian]`")  
                elif type(decoder_inputs) == list:
                    if len(decoder_inputs) == 0:
                        raise ValueError(IndoNLGTokenizer.input_error_message)
                    elif type(decoder_inputs[0]) != str:
                        raise ValueError(IndoNLGTokenizer.input_error_message)
                elif type(decoder_inputs) != str:
                    raise ValueError(IndoNLGTokenizer.input_error_message)

                decoder_lang_id = self.special_tokens_to_ids[decoder_lang_token]
                decoder_input_batch = self(decoder_inputs, return_attention_mask=False)
                
                if type(decoder_inputs) == str:
                    labels = [self.bos_token_id] + decoder_input_batch['input_ids'] + [self.eos_token_id, decoder_lang_id]
                    decoder_input_batch['input_ids'] = [decoder_lang_id, self.bos_token_id] + decoder_input_batch['input_ids'] + [self.eos_token_id]
                else:
                    labels = list(map(lambda input_ids: [self.bos_token_id] + input_ids + [self.eos_token_id, decoder_lang_id], decoder_input_batch['input_ids']))
                    decoder_input_batch['input_ids'] = list(map(lambda input_ids: [decoder_lang_id, self.bos_token_id] + input_ids + [self.eos_token_id], decoder_input_batch['input_ids']))
                    
                # Padding
                input_batch = self.pad(input_batch, return_tensors=return_tensors)
                decoder_input_batch = self.pad(decoder_input_batch, return_tensors=return_tensors)
                labels = self.pad({'input_ids': labels}, return_tensors=return_tensors)['input_ids']
                if not isinstance(labels, (list, tuple)):
                    labels[labels == self.pad_token_id] = -100
                else:
                    labels = list(map(lambda x: -100 if x == self.pad_token_id else x, labels))
                
                # Store into a single dict
                input_batch['decoder_input_ids'] = decoder_input_batch['input_ids']
                input_batch['decoder_attention_mask'] = decoder_input_batch['attention_mask']
                input_batch['labels'] = labels
                
                return input_batch

    def __len__(self):
        return max(self.special_ids_to_tokens) + 1
    
    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer ``prepare_for_model`` method.

        Args:
            token_ids_0 (:obj:`List[int]`):
                List of IDs.
            token_ids_1 (:obj:`List[int]`, `optional`):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            :obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """
        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
            )

        if token_ids_1 is None:
            return [1] + ([0] * len(token_ids_0)) + [1]
        return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]

    @property
    def vocab_size(self):
        return 4 + len(self.sp_model)

    def get_vocab(self):
        vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
        vocab.update(self.added_tokens_encoder)
        return vocab

    def _tokenize(self, text: str) -> List[str]:
        return self.sp_model.encode(text.lower(), out_type=str)
    
    def convert_ids_to_tokens(
        self, ids: Union[int, List[int]], skip_special_tokens: bool = False
    ) -> Union[str, List[str]]:
        """
        Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and
        added tokens.
        Args:
            ids (`int` or `List[int]`):
                The token id (or token ids) to convert to tokens.
            skip_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not to remove special tokens in the decoding.
        Returns:
            `str` or `List[str]`: The decoded token(s).
        """
        if isinstance(ids, int):
            if ids not in self.added_tokens_decoder or ids in self.special_tokens_to_ids:
                return self._convert_id_to_token(ids, skip_special_tokens=skip_special_tokens)
            else:
                return self.added_tokens_decoder[ids].content
        tokens = []
        for index in ids:
            index = int(index)
            if skip_special_tokens and index in (self.all_special_ids + list(self.special_tokens_to_ids.values())):
                continue
            if index not in self.added_tokens_decoder or index in self.special_tokens_to_ids:
                tokens.append(self._convert_id_to_token(index, skip_special_tokens=skip_special_tokens))                
            else:
                tokens.append(self.added_tokens_decoder[index].content)
        return tokens
    
    def _convert_token_to_id(self, token):
        """ Converts a token (str) in an id using the vocab. """
        if token in self.special_tokens_to_ids:
            return self.special_tokens_to_ids[token]
        return self.sp_model.PieceToId(token)
    
    def _convert_id_to_token(self, index, skip_special_tokens=False):
        """Converts an index (integer) in a token (str) using the vocab."""
        if skip_special_tokens and index in self.special_token_ids:
            return ''
            
        if index in self.special_ids_to_tokens:
            return self.special_ids_to_tokens[index]
        
        token = self.sp_model.IdToPiece(index)
        if '<0x' in token:
            char_rep = chr(int(token[1:-1], 0))
            if char_rep.isprintable():
                return char_rep
        return token
    
    def __getstate__(self):
        state = self.__dict__.copy()
        state["sp_model"] = None
        return state

    def __setstate__(self, d):
        self.__dict__ = d

        # for backward compatibility
        if not hasattr(self, "sp_model_kwargs"):
            self.sp_model_kwargs = {}

        self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
        self.sp_model.Load(self.vocab_file)

    def decode(self, inputs, skip_special_tokens=False, **kwargs):     
        outputs = super().decode(inputs, skip_special_tokens=skip_special_tokens, **kwargs)
        return outputs.replace(' ','').replace(SPIECE_UNDERLINE, ' ')
    
    def _pad_decoder(
        self,
        encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
        max_length: Optional[int] = None,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        pad_to_multiple_of: Optional[int] = None,
        return_attention_mask: Optional[bool] = None,
    ) -> dict:
        """
        Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
        Args:
            encoded_inputs:
                Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
            max_length: maximum length of the returned list and optionally padding length (see below).
                Will truncate by taking into account the special tokens.
            padding_strategy: PaddingStrategy to use for padding.
                - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
                - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
                - PaddingStrategy.DO_NOT_PAD: Do not pad
                The tokenizer padding sides are defined in self.padding_side:
                    - 'left': pads on the left of the sequences
                    - 'right': pads on the right of the sequences
            pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
                This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
                >= 7.5 (Volta).
            return_attention_mask:
                (optional) Set to False to avoid returning attention mask (default: set to model specifics)
        """
        # Load from model defaults
        if return_attention_mask is None:
            return_attention_mask = "decoder_attention_mask" in self.model_input_names

        required_input = encoded_inputs[self.model_input_names[2]]

        if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
            max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of

        needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length

        # Initialize attention mask if not present.
        if return_attention_mask and "decoder_attention_mask" not in encoded_inputs:
            encoded_inputs["decoder_attention_mask"] = [1] * len(required_input)

        if needs_to_be_padded:
            difference = max_length - len(required_input)

            if self.padding_side == "right":
                if return_attention_mask:
                    encoded_inputs["decoder_attention_mask"] = encoded_inputs["decoder_attention_mask"] + [0] * difference
                if "decoder_token_type_ids" in encoded_inputs:
                    encoded_inputs["decoder_token_type_ids"] = (
                        encoded_inputs["decoder_token_type_ids"] + [self.pad_token_type_id] * difference
                    )
                if "decoder_special_tokens_mask" in encoded_inputs:
                    encoded_inputs["decoder_special_tokens_mask"] = encoded_inputs["decoder_special_tokens_mask"] + [1] * difference
                encoded_inputs[self.model_input_names[2]] = required_input + [self.pad_token_id] * difference
                
                label_input = encoded_inputs[self.model_input_names[4]]
                encoded_inputs[self.model_input_names[4]] = label_input + [-100] * difference
            elif self.padding_side == "left":
                if return_attention_mask:
                    encoded_inputs["decoder_attention_mask"] = [0] * difference + encoded_inputs["decoder_attention_mask"]
                if "decoder_token_type_ids" in encoded_inputs:
                    encoded_inputs["decoder_token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
                        "decoder_token_type_ids"
                    ]
                if "decoder_special_tokens_mask" in encoded_inputs:
                    encoded_inputs["decoder_special_tokens_mask"] = [1] * difference + encoded_inputs["decoder_special_tokens_mask"]
                encoded_inputs[self.model_input_names[2]] = [self.pad_token_id] * difference + required_input
                
                label_input = encoded_inputs[self.model_input_names[4]]
                encoded_inputs[self.model_input_names[4]] = label_input + [-100] * difference
            else:
                raise ValueError("Invalid padding strategy:" + str(self.padding_side))

        return encoded_inputs    
        
    def pad(self,
        encoded_inputs: Union[
            BatchEncoding,
            List[BatchEncoding],
            Dict[str, EncodedInput],
            Dict[str, List[EncodedInput]],
            List[Dict[str, EncodedInput]],
        ],
        padding: Union[bool, str, PaddingStrategy] = True,
        max_length: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
        return_attention_mask: Optional[bool] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        verbose: bool = True,
    ) -> BatchEncoding:
        """
        Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
        in the batch.

        Padding side (left/right) padding token ids are defined at the tokenizer level (with `self.padding_side`,
        `self.pad_token_id` and `self.pad_token_type_id`)

        <Tip>

        If the `encoded_inputs` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
        result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of
        PyTorch tensors, you will lose the specific device of your tensors however.

        </Tip>

        Args:
            encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`):
                Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of
                tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str,
                List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader
                collate function.

                Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see
                the note above for the return type.
            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
                 Select a strategy to pad the returned sequences (according to the model's padding side and padding
                 index) among:

                - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                  sequence if provided).
                - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                  acceptable input length for the model if that argument is not provided.
                - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
                  lengths).
            max_length (`int`, *optional*):
                Maximum length of the returned list and optionally padding length (see above).
            pad_to_multiple_of (`int`, *optional*):
                If set will pad the sequence to a multiple of the provided value.

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                >= 7.5 (Volta).
            return_attention_mask (`bool`, *optional*):
                Whether to return the attention mask. If left to the default, will return the attention mask according
                to the specific tokenizer's default, defined by the `return_outputs` attribute.

                [What are attention masks?](../glossary#attention-mask)
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors instead of list of python integers. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return Numpy `np.ndarray` objects.
            verbose (`bool`, *optional*, defaults to `True`):
                Whether or not to print more information and warnings.
        """
        # If we have a list of dicts, let's convert it in a dict of lists
        # We do this to allow using this method as a collate_fn function in PyTorch Dataloader
        if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping):
            encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()}

        # The model's main input name, usually `input_ids`, has be passed for padding
        if self.model_input_names[0] not in encoded_inputs:
            raise ValueError(
                "You should supply an encoding or a list of encodings to this method "
                f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
            )

        required_input = encoded_inputs[self.model_input_names[0]]

        if not required_input:
            if return_attention_mask:
                encoded_inputs["attention_mask"] = []
            return encoded_inputs

        # If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
        # and rebuild them afterwards if no return_tensors is specified
        # Note that we lose the specific device the tensor may be on for PyTorch

        first_element = required_input[0]
        if isinstance(first_element, (list, tuple)):
            # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
            for item in required_input:
                if len(item) != 0:
                    first_element = item[0]
                    break
        # At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
        if not isinstance(first_element, (int, list, tuple)):
            if is_tf_available() and _is_tensorflow(first_element):
                return_tensors = "tf" if return_tensors is None else return_tensors
            elif is_torch_available() and _is_torch(first_element):
                return_tensors = "pt" if return_tensors is None else return_tensors
            elif isinstance(first_element, np.ndarray):
                return_tensors = "np" if return_tensors is None else return_tensors
            else:
                raise ValueError(
                    f"type of {first_element} unknown: {type(first_element)}. "
                    f"Should be one of a python, numpy, pytorch or tensorflow object."
                )

            for key, value in encoded_inputs.items():
                encoded_inputs[key] = to_py_obj(value)

        # Convert padding_strategy in PaddingStrategy
        padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
            padding=padding, max_length=max_length, verbose=verbose
        )

        required_input = encoded_inputs[self.model_input_names[0]]
        if required_input and not isinstance(required_input[0], (list, tuple)):
            encoded_inputs = self._pad(
                encoded_inputs,
                max_length=max_length,
                padding_strategy=padding_strategy,
                pad_to_multiple_of=pad_to_multiple_of,
                return_attention_mask=return_attention_mask,
            )
            return BatchEncoding(encoded_inputs, tensor_type=return_tensors)

        batch_size = len(required_input)
        assert all(
            len(v) == batch_size for v in encoded_inputs.values()
        ), "Some items in the output dictionary have a different batch size than others."

        if padding_strategy == PaddingStrategy.LONGEST:
            max_length = max(len(inputs) for inputs in required_input)
            padding_strategy = PaddingStrategy.MAX_LENGTH

        batch_outputs = {}
        for i in range(batch_size):
            inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
            outputs = self._pad(
                inputs,
                max_length=max_length,
                padding_strategy=padding_strategy,
                pad_to_multiple_of=pad_to_multiple_of,
                return_attention_mask=return_attention_mask,
            )
            
            # Handle decoder_input_ids
            if self.model_input_names[2] in outputs:
                max_decoder_length = max(len(inputs) for inputs in encoded_inputs[self.model_input_names[2]])                    
                outputs = self._pad_decoder(
                    outputs,
                    max_length=max_decoder_length,
                    padding_strategy=padding_strategy,
                    pad_to_multiple_of=pad_to_multiple_of,
                    return_attention_mask=return_attention_mask,
                )

            for key, value in outputs.items():
                if key not in batch_outputs:
                    batch_outputs[key] = []
                batch_outputs[key].append(value)

        return BatchEncoding(batch_outputs, tensor_type=return_tensors)