aayushraina commited on
Commit
bd1e246
·
verified ·
1 Parent(s): 15e2a67

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -81
app.py CHANGED
@@ -1,81 +1 @@
1
- import gradio as gr
2
- import torch
3
- from transformers import GPT2LMHeadModel, GPT2Tokenizer
4
-
5
- # Load model and tokenizer
6
- def load_model():
7
- try:
8
- # Load the fine-tuned model
9
- model = GPT2LMHeadModel.from_pretrained("aayushraina/gpt2shakespeare")
10
- # Use the base GPT-2 tokenizer
11
- tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
12
- model.eval()
13
- print("Model and tokenizer loaded successfully!")
14
- return model, tokenizer
15
- except Exception as e:
16
- print(f"Error loading model: {e}")
17
- return None, None
18
-
19
- # Text generation function
20
- def generate_text(prompt, max_length=500, temperature=0.8, top_k=40, top_p=0.9):
21
- if model is None or tokenizer is None:
22
- return "Error: Model not loaded properly"
23
-
24
- try:
25
- # Encode the input prompt
26
- input_ids = tokenizer.encode(prompt, return_tensors='pt')
27
-
28
- # Generate text
29
- with torch.no_grad():
30
- output = model.generate(
31
- input_ids,
32
- max_length=max_length,
33
- temperature=temperature,
34
- top_k=top_k,
35
- top_p=top_p,
36
- do_sample=True,
37
- pad_token_id=tokenizer.eos_token_id,
38
- num_return_sequences=1
39
- )
40
-
41
- # Decode and return the generated text
42
- generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
43
- return generated_text
44
- except Exception as e:
45
- return f"Error during generation: {str(e)}"
46
-
47
- # Load model and tokenizer globally
48
- print("Loading model and tokenizer...")
49
- model, tokenizer = load_model()
50
-
51
- # Create Gradio interface
52
- demo = gr.Interface(
53
- fn=generate_text,
54
- inputs=[
55
- gr.Textbox(label="Enter your prompt", placeholder="Start your text here...", lines=2),
56
- gr.Slider(minimum=10, maximum=1000, value=500, step=10, label="Maximum Length"),
57
- gr.Slider(minimum=0.1, maximum=2.0, value=0.8, step=0.1, label="Temperature"),
58
- gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Top-k"),
59
- gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p"),
60
- ],
61
- outputs=gr.Textbox(label="Generated Text", lines=10),
62
- title="Shakespeare-style Text Generator",
63
- description="""Generate Shakespeare-style text using a fine-tuned GPT-2 model.
64
-
65
- Parameters:
66
- - Temperature: Higher values make the output more random, lower values more focused
67
- - Top-k: Number of highest probability vocabulary tokens to keep for top-k filtering
68
- - Top-p: Cumulative probability for nucleus sampling
69
- """,
70
- examples=[
71
- ["First Citizen:", 500, 0.8, 40, 0.9],
72
- ["To be, or not to be,", 500, 0.8, 40, 0.9],
73
- ["Friends, Romans, countrymen,", 500, 0.8, 40, 0.9],
74
- ["O Romeo, Romeo,", 500, 0.8, 40, 0.9],
75
- ["Now is the winter of our discontent", 500, 0.8, 40, 0.9]
76
- ]
77
- )
78
-
79
- # Launch the app
80
- if __name__ == "__main__":
81
- demo.launch()
 
1
+