Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -1,81 +1 @@
|
|
1 |
-
|
2 |
-
import torch
|
3 |
-
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
4 |
-
|
5 |
-
# Load model and tokenizer
|
6 |
-
def load_model():
|
7 |
-
try:
|
8 |
-
# Load the fine-tuned model
|
9 |
-
model = GPT2LMHeadModel.from_pretrained("aayushraina/gpt2shakespeare")
|
10 |
-
# Use the base GPT-2 tokenizer
|
11 |
-
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
12 |
-
model.eval()
|
13 |
-
print("Model and tokenizer loaded successfully!")
|
14 |
-
return model, tokenizer
|
15 |
-
except Exception as e:
|
16 |
-
print(f"Error loading model: {e}")
|
17 |
-
return None, None
|
18 |
-
|
19 |
-
# Text generation function
|
20 |
-
def generate_text(prompt, max_length=500, temperature=0.8, top_k=40, top_p=0.9):
|
21 |
-
if model is None or tokenizer is None:
|
22 |
-
return "Error: Model not loaded properly"
|
23 |
-
|
24 |
-
try:
|
25 |
-
# Encode the input prompt
|
26 |
-
input_ids = tokenizer.encode(prompt, return_tensors='pt')
|
27 |
-
|
28 |
-
# Generate text
|
29 |
-
with torch.no_grad():
|
30 |
-
output = model.generate(
|
31 |
-
input_ids,
|
32 |
-
max_length=max_length,
|
33 |
-
temperature=temperature,
|
34 |
-
top_k=top_k,
|
35 |
-
top_p=top_p,
|
36 |
-
do_sample=True,
|
37 |
-
pad_token_id=tokenizer.eos_token_id,
|
38 |
-
num_return_sequences=1
|
39 |
-
)
|
40 |
-
|
41 |
-
# Decode and return the generated text
|
42 |
-
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
43 |
-
return generated_text
|
44 |
-
except Exception as e:
|
45 |
-
return f"Error during generation: {str(e)}"
|
46 |
-
|
47 |
-
# Load model and tokenizer globally
|
48 |
-
print("Loading model and tokenizer...")
|
49 |
-
model, tokenizer = load_model()
|
50 |
-
|
51 |
-
# Create Gradio interface
|
52 |
-
demo = gr.Interface(
|
53 |
-
fn=generate_text,
|
54 |
-
inputs=[
|
55 |
-
gr.Textbox(label="Enter your prompt", placeholder="Start your text here...", lines=2),
|
56 |
-
gr.Slider(minimum=10, maximum=1000, value=500, step=10, label="Maximum Length"),
|
57 |
-
gr.Slider(minimum=0.1, maximum=2.0, value=0.8, step=0.1, label="Temperature"),
|
58 |
-
gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Top-k"),
|
59 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p"),
|
60 |
-
],
|
61 |
-
outputs=gr.Textbox(label="Generated Text", lines=10),
|
62 |
-
title="Shakespeare-style Text Generator",
|
63 |
-
description="""Generate Shakespeare-style text using a fine-tuned GPT-2 model.
|
64 |
-
|
65 |
-
Parameters:
|
66 |
-
- Temperature: Higher values make the output more random, lower values more focused
|
67 |
-
- Top-k: Number of highest probability vocabulary tokens to keep for top-k filtering
|
68 |
-
- Top-p: Cumulative probability for nucleus sampling
|
69 |
-
""",
|
70 |
-
examples=[
|
71 |
-
["First Citizen:", 500, 0.8, 40, 0.9],
|
72 |
-
["To be, or not to be,", 500, 0.8, 40, 0.9],
|
73 |
-
["Friends, Romans, countrymen,", 500, 0.8, 40, 0.9],
|
74 |
-
["O Romeo, Romeo,", 500, 0.8, 40, 0.9],
|
75 |
-
["Now is the winter of our discontent", 500, 0.8, 40, 0.9]
|
76 |
-
]
|
77 |
-
)
|
78 |
-
|
79 |
-
# Launch the app
|
80 |
-
if __name__ == "__main__":
|
81 |
-
demo.launch()
|
|
|
1 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|