import openai import pandas as pd from sklearn.ensemble import RandomForestClassifier import joblib import gradio as gr # Load the trained classifier model model = joblib.load('model_pkl') # OpenAI API key (assumed to be set in Hugging Face environment) openai.api_key = 'sk-jtt46VTrnym9B57gkkS_QAJ2E0RYodrEDHodAgliVqT3BlbkFJKooyGzBYbWkWkIt4-MG6ASNt4pMguQs2Mob6kpkaEA' # Function to simulate the medical assistant's interaction def medical_assistant_interaction(pulse_rate, blood_pressure_systolic, blood_pressure_diastolic, temperature_celsius, headache, muscle_pain, sore_throat, nausea_vomiting, diarrhea, joint_pains, cough): try: # Prepare symptom responses symptom_responses = { "Headache": headache, "Muscle Pain": muscle_pain, "Sore Throat": sore_throat, "Nausea and Vomiting": nausea_vomiting, "Diarrhea": diarrhea, "Joint Pains": joint_pains, "Dry Cough or Coughing Blood": cough } # Combine responses into a single text input patient_responses = ', '.join([f"{symptom}: {response}" for symptom, response in symptom_responses.items()]) # Compile sensor data for the classifier features = pd.DataFrame({ 'Pulse_Rate': [pulse_rate], 'Blood_Pressure_Systolic': [blood_pressure_systolic], 'Blood_Pressure_Diastolic': [blood_pressure_diastolic], 'Temperature_Celsius': [temperature_celsius] }) # Make a prediction using the trained classifier prediction = model.predict(features)[0] # Use OpenAI to make a combined inference response_text = f""" A patient has the following sensor readings: - Pulse Rate: {pulse_rate} bpm - Systolic Blood Pressure: {blood_pressure_systolic} mmHg - Diastolic Blood Pressure: {blood_pressure_diastolic} mmHg - Temperature: {temperature_celsius}°C The patient reported the following symptoms: {patient_responses}. Based on these readings and symptoms, what is the likelihood of Lassa fever? Provide additional follow-up questions if necessary. """ # Call OpenAI's API for a response response = openai.Completion.create( engine="text-davinci-003", prompt=response_text, max_tokens=150 ) assistant_message = response['choices'][0]['text'].strip() # Combine the assistant's message with the model's prediction if prediction == 1: model_inference = "Based on the sensor readings, the classifier suggests a high likelihood of Lassa fever." else: model_inference = "Based on the sensor readings, the classifier suggests a low likelihood of Lassa fever." final_inference = f"{assistant_message}\n\n{model_inference}" return final_inference except Exception as e: return f"An error occurred: {str(e)}" # Gradio interface for interaction def gradio_interface(pulse_rate, blood_pressure_systolic, blood_pressure_diastolic, temperature_celsius, headache, muscle_pain, sore_throat, nausea_vomiting, diarrhea, joint_pains, cough): return medical_assistant_interaction( pulse_rate, blood_pressure_systolic, blood_pressure_diastolic, temperature_celsius, headache, muscle_pain, sore_throat, nausea_vomiting, diarrhea, joint_pains, cough ) # Create a Gradio interface interface = gr.Interface( fn=gradio_interface, inputs=[ gr.Number(label="Pulse Rate (bpm)"), gr.Number(label="Systolic Blood Pressure (mmHg)"), gr.Number(label="Diastolic Blood Pressure (mmHg)"), gr.Number(label="Temperature (Celsius)"), gr.Radio(choices=["Yes", "No"], label="Are you experiencing headaches?"), gr.Radio(choices=["Yes", "No"], label="Are you experiencing muscle pain?"), gr.Radio(choices=["Yes", "No"], label="Are you experiencing a sore throat?"), gr.Radio(choices=["Yes", "No"], label="Are you experiencing nausea and vomiting?"), gr.Radio(choices=["Yes", "No"], label="Are you experiencing diarrhea?"), gr.Radio(choices=["Yes", "No"], label="Are you experiencing joint pains?"), gr.Radio(choices=["Yes", "No"], label="Are you experiencing a dry cough or coughing blood?") ], outputs="text", title="Lassa Fever Medical Assistant", description="This assistant uses sensor data and patient symptom responses to infer the likelihood of Lassa fever." ) # Launch the Gradio interface interface.launch()