File size: 1,714 Bytes
816ccb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import gradio as gr
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

# Set up device (GPU if available)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load the fine-tuned model and tokenizer
model_name = "aarohanverma/text2sql-flan-t5-base-qlora-finetuned"  # Replace with your model repo name
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base")

def generate_sql(context: str, query: str) -> str:
    """
    Constructs a prompt using the user-provided context and query, then generates a SQL query.
    """
    prompt = f"""Context:
{context}

Query:
{query}

Response:
"""
    inputs = tokenizer(prompt, return_tensors="pt").to(device)
    generated_ids = model.generate(
        input_ids=inputs["input_ids"],
        max_new_tokens=250,
        temperature=0.0,      # Deterministic output
        num_beams=3,          # Beam search for quality output
        early_stopping=True,
    )
    return tokenizer.decode(generated_ids[0], skip_special_tokens=True)

# Create a Gradio interface with two input boxes: one for context, one for query.
iface = gr.Interface(
    fn=generate_sql,
    inputs=[
        gr.Textbox(lines=8, label="Context", placeholder="Enter table schema, sample data, etc."),
        gr.Textbox(lines=2, label="Query", placeholder="Enter your natural language query here...")
    ],
    outputs="text",
    title="Text-to-SQL Generator",
    description="Enter your own context (e.g., database schema and sample data) and a natural language query. The model will generate the corresponding SQL statement."
)

iface.launch()