# importing the libraries and dependencies needed for creating the UI and supporting the deep learning models used in the project import streamlit as st import tensorflow as tf import random from PIL import Image from tensorflow import keras import numpy as np import os import warnings warnings.filterwarnings("ignore") os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' st.set_page_config( page_title="ChestAI - Pneumonia Detection", page_icon="🫁", initial_sidebar_state="expanded" ) hide_streamlit_style = """ """ st.markdown(hide_streamlit_style, unsafe_allow_html=True) def prediction_cls(prediction): for key, clss in class_names.items(): # create a dictionary of the output classes if np.argmax(prediction) == clss: # check the class return key with st.sidebar: st.title("👋 Welcome to ChestAI") st.markdown(""" ### About ChestAI uses advanced deep learning to detect pneumonia in chest X-rays. ### How to use 1. Upload a chest X-ray image (JPG/PNG) 2. Wait for the analysis 3. View the results and confidence score ### Note This tool is for educational purposes only. Always consult healthcare professionals for medical advice. """) st.set_option("deprecation.showfileUploaderEncoding", False) @st.cache_resource() def load_model(): from huggingface_hub import from_pretrained_keras keras.utils.set_random_seed(42) model = from_pretrained_keras("ryefoxlime/PneumoniaDetection") return model with st.spinner("Model is being loaded.."): model = load_model() file = st.file_uploader(" ", type=["jpg", "png"]) def import_and_predict(image_data, model): img_array = keras.preprocessing.image.img_to_array(image_data) img_array = np.expand_dims(img_array, axis=0) img_array = img_array/255 predictions = model.predict(img_array) return predictions if file is None: st.text("Please upload an image file") else: image = keras.preprocessing.image.load_img(file, target_size=(224, 224), color_mode='rgb') st.image(image, caption="Uploaded Image.", use_column_width=True) predictions = import_and_predict(image, model) print(predictions) class_names = [ "Normal", "PNEUMONIA", ] string = "Detected Disease : " + class_names[np.argmax(predictions)] if class_names[np.argmax(predictions)] == "Normal": st.balloons() st.success(string) elif class_names[np.argmax(predictions)] == "PNEUMONIA": st.warning(string)