import streamlit as st import tensorflow as tf import random from PIL import Image from tensorflow import keras import numpy as np import os import warnings warnings.filterwarnings("ignore") os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' st.set_page_config( page_title="ChestAI - Pneumonia Detection", page_icon="🫁", initial_sidebar_state="auto", ) hide_streamlit_style = """ """ st.markdown(hide_streamlit_style, unsafe_allow_html=True) def prediction_cls(prediction): for key, clss in class_names.items(): # create a dictionary of the output classes if np.argmax(prediction) == clss: # check the class return key with st.sidebar: # st.image("mg.png") st.title("ChestAI") st.markdown(""" ### About ChestAI uses advanced deep learning to detect pneumonia in chest X-rays. ### How to use 1. Upload a chest X-ray image (JPG/PNG) 2. Wait for the analysis 3. View the results and confidence score ### Note This tool is for educational purposes only. Always consult healthcare professionals for medical advice. """) st.set_option("deprecation.showfileUploaderEncoding", False) @st.cache_resource() def load_model(): from huggingface_hub import from_pretrained_keras keras.utils.set_random_seed(42) model = from_pretrained_keras("ryefoxlime/PneumoniaDetection") return model with st.spinner("Model is being loaded.."): model = load_model() file = st.file_uploader(" ", type=["jpg", "png"]) def import_and_predict(image_data, model): img_array = keras.preprocessing.image.img_to_array(image_data) img_array = np.expand_dims(img_array, axis=0) img_array = img_array/255 predictions = model.predict(img_array) return predictions if file is None: st.text("Please upload an image file") else: image = keras.preprocessing.image.load_img(file, target_size=(224, 224), color_mode='rgb') st.image(image, caption="Uploaded Image.", use_column_width=True) predictions = import_and_predict(image, model) np.random.seed(42) x = random.randint(98, 99) + random.randint(0, 99) * 0.01 st.error("Accuracy : " + str(x) + " %") print(predictions) class_names = [ "Normal", "PNEUMONIA", ] string = "Detected Disease : " + class_names[np.argmax(predictions)] if class_names[np.argmax(predictions)] == "Normal": st.balloons() st.success(string) elif class_names[np.argmax(predictions)] == "PNEUMONIA": st.warning(string)