Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
import tensorflow as tf
|
3 |
-
import random
|
4 |
from PIL import Image
|
5 |
from tensorflow import keras
|
6 |
import numpy as np
|
@@ -18,19 +17,14 @@ st.set_page_config(
|
|
18 |
)
|
19 |
|
20 |
hide_streamlit_style = """
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
"""
|
26 |
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
27 |
|
28 |
-
|
29 |
-
def prediction_cls(prediction):
|
30 |
-
for key, clss in class_names.items():
|
31 |
-
if np.argmax(prediction) == clss:
|
32 |
-
return key
|
33 |
-
|
34 |
|
35 |
with st.sidebar:
|
36 |
st.title("ChestAI")
|
@@ -51,33 +45,32 @@ st.set_option("deprecation.showfileUploaderEncoding", False)
|
|
51 |
@st.cache_resource(show_spinner=False)
|
52 |
def load_model():
|
53 |
try:
|
|
|
54 |
from huggingface_hub import from_pretrained_keras
|
55 |
keras.utils.set_random_seed(42)
|
56 |
model = from_pretrained_keras("ryefoxlime/PneumoniaDetection")
|
57 |
return model
|
58 |
except Exception as e:
|
59 |
-
st.error(f"Error loading model: {str(e)}")
|
60 |
return None
|
61 |
|
62 |
with st.spinner("Model is being loaded..."):
|
63 |
model = load_model()
|
64 |
|
65 |
if model is None:
|
66 |
-
st.error("Failed to load model. Please
|
67 |
st.stop()
|
68 |
|
69 |
file = st.file_uploader(" ", type=["jpg", "png"])
|
70 |
|
71 |
-
|
72 |
def import_and_predict(image_data, model):
|
73 |
img_array = keras.preprocessing.image.img_to_array(image_data)
|
74 |
img_array = np.expand_dims(img_array, axis=0)
|
75 |
-
img_array = img_array/255
|
76 |
|
77 |
predictions = model.predict(img_array)
|
78 |
return predictions
|
79 |
|
80 |
-
|
81 |
if file is None:
|
82 |
st.text("Please upload an image file")
|
83 |
else:
|
@@ -85,22 +78,17 @@ else:
|
|
85 |
image = keras.preprocessing.image.load_img(file, target_size=(224, 224), color_mode='rgb')
|
86 |
st.image(image, caption="Uploaded Image.", use_column_width=True)
|
87 |
predictions = import_and_predict(image, model)
|
88 |
-
|
89 |
-
class_names = [
|
90 |
-
"Normal",
|
91 |
-
"PNEUMONIA",
|
92 |
-
]
|
93 |
|
94 |
confidence = float(max(predictions[0]) * 100)
|
95 |
prediction_label = class_names[np.argmax(predictions)]
|
96 |
-
|
97 |
st.info(f"Confidence: {confidence:.2f}%")
|
98 |
-
|
99 |
if prediction_label == "Normal":
|
100 |
st.balloons()
|
101 |
st.success(f"Result: {prediction_label}")
|
102 |
else:
|
103 |
st.warning(f"Result: {prediction_label}")
|
104 |
-
|
105 |
except Exception as e:
|
106 |
-
st.error(f"Error processing image: {str(e)}")
|
|
|
1 |
import streamlit as st
|
2 |
import tensorflow as tf
|
|
|
3 |
from PIL import Image
|
4 |
from tensorflow import keras
|
5 |
import numpy as np
|
|
|
17 |
)
|
18 |
|
19 |
hide_streamlit_style = """
|
20 |
+
<style>
|
21 |
+
#MainMenu {visibility: hidden;}
|
22 |
+
footer {visibility: hidden;}
|
23 |
+
</style>
|
24 |
"""
|
25 |
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
26 |
|
27 |
+
class_names = ["Normal", "PNEUMONIA"]
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
with st.sidebar:
|
30 |
st.title("ChestAI")
|
|
|
45 |
@st.cache_resource(show_spinner=False)
|
46 |
def load_model():
|
47 |
try:
|
48 |
+
# Attempt to load the model from Hugging Face
|
49 |
from huggingface_hub import from_pretrained_keras
|
50 |
keras.utils.set_random_seed(42)
|
51 |
model = from_pretrained_keras("ryefoxlime/PneumoniaDetection")
|
52 |
return model
|
53 |
except Exception as e:
|
54 |
+
st.error(f"Error loading model from Hugging Face: {str(e)}")
|
55 |
return None
|
56 |
|
57 |
with st.spinner("Model is being loaded..."):
|
58 |
model = load_model()
|
59 |
|
60 |
if model is None:
|
61 |
+
st.error("Failed to load model from Hugging Face. Please check the model name or path.")
|
62 |
st.stop()
|
63 |
|
64 |
file = st.file_uploader(" ", type=["jpg", "png"])
|
65 |
|
|
|
66 |
def import_and_predict(image_data, model):
|
67 |
img_array = keras.preprocessing.image.img_to_array(image_data)
|
68 |
img_array = np.expand_dims(img_array, axis=0)
|
69 |
+
img_array = img_array / 255
|
70 |
|
71 |
predictions = model.predict(img_array)
|
72 |
return predictions
|
73 |
|
|
|
74 |
if file is None:
|
75 |
st.text("Please upload an image file")
|
76 |
else:
|
|
|
78 |
image = keras.preprocessing.image.load_img(file, target_size=(224, 224), color_mode='rgb')
|
79 |
st.image(image, caption="Uploaded Image.", use_column_width=True)
|
80 |
predictions = import_and_predict(image, model)
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
confidence = float(max(predictions[0]) * 100)
|
83 |
prediction_label = class_names[np.argmax(predictions)]
|
84 |
+
|
85 |
st.info(f"Confidence: {confidence:.2f}%")
|
86 |
+
|
87 |
if prediction_label == "Normal":
|
88 |
st.balloons()
|
89 |
st.success(f"Result: {prediction_label}")
|
90 |
else:
|
91 |
st.warning(f"Result: {prediction_label}")
|
92 |
+
|
93 |
except Exception as e:
|
94 |
+
st.error(f"Error processing image: {str(e)}")
|