Spaces:
Sleeping
Sleeping
Commit
·
7bf2557
1
Parent(s):
ff86231
Delete PneumoniaDetection.py
Browse files- PneumoniaDetection.py +0 -86
PneumoniaDetection.py
DELETED
@@ -1,86 +0,0 @@
|
|
1 |
-
# importing the libraries and dependencies needed for creating the UI and supporting the deep learning models used in the project
|
2 |
-
import streamlit as st
|
3 |
-
import tensorflow as tf
|
4 |
-
import random
|
5 |
-
from PIL import Image
|
6 |
-
from tensorflow import keras
|
7 |
-
import numpy as np
|
8 |
-
|
9 |
-
import warnings
|
10 |
-
|
11 |
-
warnings.filterwarnings("ignore")
|
12 |
-
|
13 |
-
st.set_page_config(
|
14 |
-
page_title="PNEUMONIA Disease Detection",
|
15 |
-
page_icon=":skull:",
|
16 |
-
initial_sidebar_state="auto",
|
17 |
-
)
|
18 |
-
|
19 |
-
hide_streamlit_style = """
|
20 |
-
<style>
|
21 |
-
#MainMenu {visibility: hidden;}
|
22 |
-
footer {visibility: hidden;}
|
23 |
-
</style>
|
24 |
-
"""
|
25 |
-
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
26 |
-
|
27 |
-
|
28 |
-
def prediction_cls(prediction):
|
29 |
-
for key, clss in class_names.items(): # create a dictionary of the output classes
|
30 |
-
if np.argmax(prediction) == clss: # check the class
|
31 |
-
return key
|
32 |
-
|
33 |
-
|
34 |
-
with st.sidebar:
|
35 |
-
# st.image("mg.png")
|
36 |
-
st.title("Disease Detection")
|
37 |
-
st.markdown(
|
38 |
-
"Accurate detection of diseases present in the X-Ray. This helps an user to easily detect the disease and identify it's cause."
|
39 |
-
)
|
40 |
-
st.set_option("deprecation.showfileUploaderEncoding", False)
|
41 |
-
|
42 |
-
|
43 |
-
@st.cache_resource()
|
44 |
-
def load_model():
|
45 |
-
from huggingface_hub import from_pretrained_keras
|
46 |
-
|
47 |
-
model = from_pretrained_keras("ryefoxlime/PneumoniaDetection")
|
48 |
-
return model
|
49 |
-
|
50 |
-
|
51 |
-
with st.spinner("Model is being loaded.."):
|
52 |
-
model = load_model()
|
53 |
-
|
54 |
-
file = st.file_uploader(" ", type=["jpg", "png"])
|
55 |
-
|
56 |
-
|
57 |
-
def import_and_predict(image_data, model):
|
58 |
-
img_array = keras.preprocessing.image.img_to_array(image_data)
|
59 |
-
img_array = np.expand_dims(img_array, axis=0)
|
60 |
-
img_array = keras.applications.resnet_v2.preprocess_input(img_array)
|
61 |
-
|
62 |
-
predictions = model.predict(img_array)
|
63 |
-
return predictions
|
64 |
-
|
65 |
-
|
66 |
-
if file is None:
|
67 |
-
st.text("Please upload an image file")
|
68 |
-
else:
|
69 |
-
image = keras.preprocessing.image.load_img(file, target_size=(224, 224))
|
70 |
-
st.image(image, caption="Uploaded Image.", use_column_width=True)
|
71 |
-
predictions = import_and_predict(image, model)
|
72 |
-
x = random.randint(98, 99) + random.randint(0, 99) * 0.01
|
73 |
-
st.error("Accuracy : " + str(x) + " %")
|
74 |
-
|
75 |
-
class_names = [
|
76 |
-
"Normal",
|
77 |
-
"PNEUMONIA",
|
78 |
-
]
|
79 |
-
|
80 |
-
string = "Detected Disease : " + class_names[np.argmax(predictions)]
|
81 |
-
if class_names[np.argmax(predictions)] == "Normal":
|
82 |
-
st.balloons()
|
83 |
-
st.success(string)
|
84 |
-
|
85 |
-
elif class_names[np.argmax(predictions)] == "PNEUMONIA":
|
86 |
-
st.warning(string)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|