aaravlovescodes's picture
Update app.py
fe99911 verified
import streamlit as st
import tensorflow as tf
import numpy as np
from PIL import Image
from huggingface_hub import hf_hub_download
import os
# Suppress warnings
import warnings
warnings.filterwarnings("ignore")
# Set page configuration
st.set_page_config(
page_title="ChestAI - Pneumonia Detection",
page_icon="🫁",
initial_sidebar_state="auto",
)
# Hide Streamlit style
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
# Function to load the model
@st.cache_resource(show_spinner=False)
def load_model():
try:
# Download the model directory
model_dir = hf_hub_download(repo_id="ryefoxlime/PneumoniaDetection", repo_type="model", library="tf", cache_dir="/home/user/.cache/huggingface/hub")
# Load the model using tf.saved_model.load
model = tf.saved_model.load(model_dir)
return model
except Exception as e:
st.error(f"Error loading model: {str(e)}")
return None
# Load the model
with st.spinner("Model is being loaded..."):
model = load_model()
if model is None:
st.error("Failed to load model. Please try again.")
st.stop()
# Sidebar for app information
with st.sidebar:
st.title("ChestAI")
st.markdown("""
### About
ChestAI uses advanced deep learning to detect pneumonia in chest X-rays.
### How to use
1. Upload a chest X-ray image (JPG/PNG)
2. Wait for the analysis
3. View the results and confidence score
### Note
This tool is for educational purposes only. Always consult healthcare professionals for medical advice.
""")
st.set_option("deprecation.showfileUploaderEncoding", False)
# File uploader for image input
file = st.file_uploader("Upload a chest X-ray image", type=["jpg", "png"])
def import_and_predict(image_data, model):
img_array = tf.keras.preprocessing.image.img_to_array(image_data)
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
img_array = img_array / 255.0 # Normalize the image
# Perform prediction
predictions = model(img_array) # Call the model for prediction
return predictions
# Class names for prediction results
class_names = ["Normal", "PNEUMONIA"]
if file is None:
st.text("Please upload an image file")
else:
try:
image = tf.keras.preprocessing.image.load_img(file, target_size=(224, 224), color_mode='rgb')
st.image(image, caption="Uploaded Image.", use_column_width=True)
predictions = import_and_predict(image, model)
predicted_class = np.argmax(predictions) # Get the index of the highest prediction
confidence = float(predictions[0][predicted_class] * 100) # Confidence percentage
# Display the results
st.info(f"Confidence: {confidence:.2f}%")
if class_names[predicted_class] == "Normal":
st.balloons()
st.success(f"Result: {class_names[predicted_class]}")
else:
st.warning(f"Result: {class_names[predicted_class]}")
except Exception as e:
st.error(f"Error processing image: {str(e)}")