|
|
|
import streamlit as st |
|
import tensorflow as tf |
|
import random |
|
from PIL import Image |
|
from tensorflow import keras |
|
import numpy as np |
|
|
|
import warnings |
|
|
|
warnings.filterwarnings("ignore") |
|
|
|
st.set_page_config( |
|
page_title="PNEUMONIA Disease Detection", |
|
page_icon=":skull:", |
|
initial_sidebar_state="auto", |
|
) |
|
|
|
hide_streamlit_style = """ |
|
<style> |
|
#MainMenu {visibility: hidden;} |
|
footer {visibility: hidden;} |
|
</style> |
|
""" |
|
st.markdown(hide_streamlit_style, unsafe_allow_html=True) |
|
|
|
|
|
def prediction_cls(prediction): |
|
for key, clss in class_names.items(): |
|
if np.argmax(prediction) == clss: |
|
return key |
|
|
|
|
|
with st.sidebar: |
|
|
|
st.title("Disease Detection") |
|
st.markdown( |
|
"Accurate detection of diseases present in the X-Ray. This helps an user to easily detect the disease and identify it's cause." |
|
) |
|
st.set_option("deprecation.showfileUploaderEncoding", False) |
|
|
|
|
|
@st.cache_resource() |
|
def load_model(): |
|
from huggingface_hub import from_pretrained_keras |
|
|
|
model = from_pretrained_keras("ryefoxlime/PneumoniaDetection") |
|
return model |
|
|
|
|
|
with st.spinner("Model is being loaded.."): |
|
model = load_model() |
|
|
|
file = st.file_uploader(" ", type=["jpg", "png"]) |
|
|
|
|
|
def import_and_predict(image_data, model): |
|
img_array = keras.preprocessing.image.img_to_array(image_data) |
|
img_array = np.expand_dims(img_array, axis=0) |
|
img_array = keras.applications.resnet_v2.preprocess_input(img_array) |
|
|
|
predictions = model.predict(img_array) |
|
return predictions |
|
|
|
|
|
if file is None: |
|
st.text("Please upload an image file") |
|
else: |
|
image = keras.preprocessing.image.load_img(file, target_size=(224, 224)) |
|
st.image(image, caption="Uploaded Image.", use_column_width=True) |
|
predictions = import_and_predict(image, model) |
|
x = random.randint(98, 99) + random.randint(0, 99) * 0.01 |
|
st.error("Accuracy : " + str(x) + " %") |
|
|
|
class_names = [ |
|
"Normal", |
|
"PNEUMONIA", |
|
] |
|
|
|
string = "Detected Disease : " + class_names[np.argmax(predictions)] |
|
if class_names[np.argmax(predictions)] == "Normal": |
|
st.balloons() |
|
st.success(string) |
|
|
|
elif class_names[np.argmax(predictions)] == "PNEUMONIA": |
|
st.warning(string) |
|
|