|
import streamlit as st |
|
import tensorflow as tf |
|
import random |
|
from PIL import Image |
|
from tensorflow import keras |
|
import numpy as np |
|
import os |
|
|
|
import warnings |
|
|
|
warnings.filterwarnings("ignore") |
|
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' |
|
|
|
st.set_page_config( |
|
page_title="ChestAI - Pneumonia Detection", |
|
page_icon="🫁", |
|
initial_sidebar_state="auto", |
|
) |
|
|
|
hide_streamlit_style = """ |
|
<style> |
|
#MainMenu {visibility: hidden;} |
|
footer {visibility: hidden;} |
|
</style> |
|
""" |
|
st.markdown(hide_streamlit_style, unsafe_allow_html=True) |
|
|
|
|
|
def prediction_cls(prediction): |
|
for key, clss in class_names.items(): |
|
if np.argmax(prediction) == clss: |
|
return key |
|
|
|
|
|
with st.sidebar: |
|
st.title("ChestAI") |
|
st.markdown(""" |
|
### About |
|
ChestAI uses advanced deep learning to detect pneumonia in chest X-rays. |
|
|
|
### How to use |
|
1. Upload a chest X-ray image (JPG/PNG) |
|
2. Wait for the analysis |
|
3. View the results and confidence score |
|
|
|
### Note |
|
This tool is for educational purposes only. Always consult healthcare professionals for medical advice. |
|
""") |
|
st.set_option("deprecation.showfileUploaderEncoding", False) |
|
|
|
|
|
@st.cache_resource(show_spinner=False) |
|
def load_model(): |
|
try: |
|
from huggingface_hub import from_pretrained_keras, hf_hub_download |
|
|
|
|
|
model_path = hf_hub_download(repo_id="ryefoxlime/PneumoniaDetection", filename="model.keras") |
|
model = keras.models.load_model(model_path) |
|
return model |
|
except Exception as e: |
|
st.error(f"Error loading model: {str(e)}") |
|
return None |
|
|
|
|
|
with st.spinner("Model is being loaded..."): |
|
model = load_model() |
|
|
|
if model is None: |
|
st.error("Failed to load model. Please try again.") |
|
st.stop() |
|
|
|
file = st.file_uploader(" ", type=["jpg", "png"]) |
|
|
|
|
|
def import_and_predict(image_data, model): |
|
img_array = keras.preprocessing.image.img_to_array(image_data) |
|
img_array = np.expand_dims(img_array, axis=0) |
|
img_array = img_array/255 |
|
|
|
predictions = model.predict(img_array) |
|
return predictions |
|
|
|
|
|
if file is None: |
|
st.text("Please upload an image file") |
|
else: |
|
try: |
|
image = keras.preprocessing.image.load_img(file, target_size=(224, 224), color_mode='rgb') |
|
st.image(image, caption="Uploaded Image.", use_column_width=True) |
|
predictions = import_and_predict(image, model) |
|
|
|
class_names = [ |
|
"Normal", |
|
"PNEUMONIA", |
|
] |
|
|
|
confidence = float(max(predictions[0]) * 100) |
|
prediction_label = class_names[np.argmax(predictions)] |
|
|
|
st.info(f"Confidence: {confidence:.2f}%") |
|
|
|
if prediction_label == "Normal": |
|
st.balloons() |
|
st.success(f"Result: {prediction_label}") |
|
else: |
|
st.warning(f"Result: {prediction_label}") |
|
|
|
except Exception as e: |
|
st.error(f"Error processing image: {str(e)}") |