aaravlovescodes's picture
Update app.py
1c1deb5 verified
raw
history blame
2.79 kB
import streamlit as st
import tensorflow as tf
from PIL import Image
from tensorflow import keras
import numpy as np
import os
import warnings
warnings.filterwarnings("ignore")
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
st.set_page_config(
page_title="ChestAI - Pneumonia Detection",
page_icon="🫁",
initial_sidebar_state="auto",
)
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
class_names = ["Normal", "PNEUMONIA"]
with st.sidebar:
st.title("ChestAI")
st.markdown("""
### About
ChestAI uses advanced deep learning to detect pneumonia in chest X-rays.
### How to use
1. Upload a chest X-ray image (JPG/PNG)
2. Wait for the analysis
3. View the results and confidence score
### Note
This tool is for educational purposes only. Always consult healthcare professionals for medical advice.
""")
st.set_option("deprecation.showfileUploaderEncoding", False)
@st.cache_resource(show_spinner=False)
def load_model():
try:
from huggingface_hub import from_pretrained_keras
keras.utils.set_random_seed(42)
# Load the model from Hugging Face
model = from_pretrained_keras("aaravlovescodes/PneumoniaDetection")
return model
except Exception as e:
st.error(f"Error loading model from Hugging Face: {str(e)}")
return None
with st.spinner("Model is being loaded..."):
model = load_model()
if model is None:
st.error("Failed to load model from Hugging Face. Please check the model name or path.")
st.stop()
file = st.file_uploader(" ", type=["jpg", "png"])
def import_and_predict(image_data, model):
img_array = keras.preprocessing.image.img_to_array(image_data)
img_array = np.expand_dims(img_array, axis=0)
img_array = img_array / 255
predictions = model.predict(img_array)
return predictions
if file is None:
st.text("Please upload an image file")
else:
try:
image = keras.preprocessing.image.load_img(file, target_size=(224, 224), color_mode='rgb')
st.image(image, caption="Uploaded Image.", use_column_width=True)
predictions = import_and_predict(image, model)
confidence = float(max(predictions[0]) * 100)
prediction_label = class_names[np.argmax(predictions)]
st.info(f"Confidence: {confidence:.2f}%")
if prediction_label == "Normal":
st.balloons()
st.success(f"Result: {prediction_label}")
else:
st.warning(f"Result: {prediction_label}")
except Exception as e:
st.error(f"Error processing image: {str(e)}")