Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	File size: 3,099 Bytes
			
			| d167cec fa9e49b d167cec fa9e49b d167cec 6d6b205 d167cec 3481d08 d167cec 6d6b205 ec84b54 6d6b205 65847f9 6d6b205 65847f9 6d6b205 d167cec 3481d08 d167cec 3481d08 d167cec 3481d08 d167cec 32c82b3 d167cec 3481d08 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | import streamlit as st
import tensorflow as tf
import random
from PIL import Image
from tensorflow import keras
import numpy as np
import os
import warnings
warnings.filterwarnings("ignore")
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
st.set_page_config(
    page_title="ChestAI - Pneumonia Detection",
    page_icon="🫁",
    initial_sidebar_state="auto",
)
hide_streamlit_style = """
	<style>
  #MainMenu {visibility: hidden;}
	footer {visibility: hidden;}
  </style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
def prediction_cls(prediction):
    for key, clss in class_names.items():
        if np.argmax(prediction) == clss:
            return key
with st.sidebar:
    st.title("ChestAI")
    st.markdown("""
        ### About
        ChestAI uses advanced deep learning to detect pneumonia in chest X-rays.
                
        ### How to use
        1. Upload a chest X-ray image (JPG/PNG)
        2. Wait for the analysis
        3. View the results and confidence score
                
        ### Note
        This tool is for educational purposes only. Always consult healthcare professionals for medical advice.
    """)
st.set_option("deprecation.showfileUploaderEncoding", False)
@st.cache_resource(show_spinner=False)
def load_model():
    try:
        from huggingface_hub import from_pretrained_keras
        config = tf.compat.v1.ConfigProto()
        config.gpu_options.allow_growth = True
        tf.compat.v1.keras.backend.set_session(tf.compat.v1.Session(config=config))
        
        keras.utils.set_random_seed(42)
        model = from_pretrained_keras("ryefoxlime/PneumoniaDetection")
        return model
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        return None
with st.spinner("Model is being loaded..."):
    model = load_model()
if model is None:
    st.error("Failed to load model. Please try again.")
    st.stop()
file = st.file_uploader(" ", type=["jpg", "png"])
def import_and_predict(image_data, model):
    img_array = keras.preprocessing.image.img_to_array(image_data)
    img_array = np.expand_dims(img_array, axis=0)
    img_array = img_array/255
    predictions = model.predict(img_array)
    return predictions
if file is None:
    st.text("Please upload an image file")
else:
    try:
        image = keras.preprocessing.image.load_img(file, target_size=(224, 224), color_mode='rgb')
        st.image(image, caption="Uploaded Image.", use_column_width=True)
        predictions = import_and_predict(image, model)
        
        class_names = [
            "Normal",
            "PNEUMONIA",
        ]
        confidence = float(max(predictions[0]) * 100)
        prediction_label = class_names[np.argmax(predictions)]
        
        st.info(f"Confidence: {confidence:.2f}%")
        
        if prediction_label == "Normal":
            st.balloons()
            st.success(f"Result: {prediction_label}")
        else:
            st.warning(f"Result: {prediction_label}")
            
    except Exception as e:
        st.error(f"Error processing image: {str(e)}") |