Spaces:
Sleeping
Sleeping
File size: 3,031 Bytes
d167cec 281deee d167cec fa9e49b d167cec fa9e49b d167cec 6d6b205 d167cec 281deee d167cec 281deee d167cec 6d6b205 ec84b54 6d6b205 65847f9 6d6b205 65847f9 6d6b205 d167cec 281deee 3481d08 d167cec 3481d08 281deee 2801237 281deee 3481d08 281deee 3481d08 281deee 3481d08 d167cec 3481d08 281deee 3481d08 d167cec 281deee d167cec 281deee d167cec 281deee d167cec 3481d08 281deee 3481d08 281deee 3481d08 281deee 3481d08 281deee 3481d08 281deee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import streamlit as st
import tensorflow as tf
import random
from PIL import Image
from tensorflow import keras
import numpy as np
import os
import warnings
warnings.filterwarnings("ignore")
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
st.set_page_config(
page_title="ChestAI - Pneumonia Detection",
page_icon="🫁",
initial_sidebar_state="auto",
)
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
def prediction_cls(prediction):
for key, clss in class_names.items():
if np.argmax(prediction) == clss:
return key
with st.sidebar:
st.title("ChestAI")
st.markdown("""
### About
ChestAI uses advanced deep learning to detect pneumonia in chest X-rays.
### How to use
1. Upload a chest X-ray image (JPG/PNG)
2. Wait for the analysis
3. View the results and confidence score
### Note
This tool is for educational purposes only. Always consult healthcare professionals for medical advice.
""")
st.set_option("deprecation.showfileUploaderEncoding", False)
@st.cache_resource(show_spinner=False)
def load_model():
try:
from huggingface_hub import from_pretrained_keras, hf_hub_download
# Download the model files directly
model_path = hf_hub_download(repo_id="ryefoxlime/PneumoniaDetection", filename="saved_model.pb")
model = keras.models.load_model(model_path)
return model
except Exception as e:
st.error(f"Error loading model: {str(e)}")
return None
with st.spinner("Model is being loaded..."):
model = load_model()
if model is None:
st.error("Failed to load model. Please try again.")
st.stop()
file = st.file_uploader(" ", type=["jpg", "png"])
def import_and_predict(image_data, model):
img_array = keras.preprocessing.image.img_to_array(image_data)
img_array = np.expand_dims(img_array, axis=0)
img_array = img_array/255
predictions = model.predict(img_array)
return predictions
if file is None:
st.text("Please upload an image file")
else:
try:
image = keras.preprocessing.image.load_img(file, target_size=(224, 224), color_mode='rgb')
st.image(image, caption="Uploaded Image.", use_column_width=True)
predictions = import_and_predict(image, model)
class_names = [
"Normal",
"PNEUMONIA",
]
confidence = float(max(predictions[0]) * 100)
prediction_label = class_names[np.argmax(predictions)]
st.info(f"Confidence: {confidence:.2f}%")
if prediction_label == "Normal":
st.balloons()
st.success(f"Result: {prediction_label}")
else:
st.warning(f"Result: {prediction_label}")
except Exception as e:
st.error(f"Error processing image: {str(e)}") |