File size: 3,031 Bytes
d167cec
 
281deee
d167cec
 
 
fa9e49b
d167cec
 
 
 
fa9e49b
d167cec
 
6d6b205
 
 
 
d167cec
 
281deee
 
 
 
d167cec
 
 
281deee
 
 
 
 
 
d167cec
 
6d6b205
ec84b54
6d6b205
 
65847f9
6d6b205
 
 
 
65847f9
6d6b205
 
 
d167cec
 
281deee
3481d08
d167cec
3481d08
281deee
 
 
2801237
281deee
3481d08
 
281deee
3481d08
 
281deee
3481d08
d167cec
 
3481d08
281deee
3481d08
 
d167cec
 
281deee
d167cec
 
 
281deee
d167cec
 
 
 
281deee
d167cec
 
 
3481d08
 
 
 
281deee
 
 
 
 
3481d08
 
 
281deee
3481d08
281deee
3481d08
 
 
 
 
281deee
3481d08
281deee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import streamlit as st
import tensorflow as tf
import random
from PIL import Image
from tensorflow import keras
import numpy as np
import os

import warnings

warnings.filterwarnings("ignore")
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'

st.set_page_config(
    page_title="ChestAI - Pneumonia Detection",
    page_icon="🫁",
    initial_sidebar_state="auto",
)

hide_streamlit_style = """
	<style>
  #MainMenu {visibility: hidden;}
	footer {visibility: hidden;}
  </style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)


def prediction_cls(prediction):
    for key, clss in class_names.items():
        if np.argmax(prediction) == clss:
            return key


with st.sidebar:
    st.title("ChestAI")
    st.markdown("""
        ### About
        ChestAI uses advanced deep learning to detect pneumonia in chest X-rays.
                
        ### How to use
        1. Upload a chest X-ray image (JPG/PNG)
        2. Wait for the analysis
        3. View the results and confidence score
                
        ### Note
        This tool is for educational purposes only. Always consult healthcare professionals for medical advice.
    """)
st.set_option("deprecation.showfileUploaderEncoding", False)


@st.cache_resource(show_spinner=False)
def load_model():
    try:
        from huggingface_hub import from_pretrained_keras, hf_hub_download
        
        # Download the model files directly
        model_path = hf_hub_download(repo_id="ryefoxlime/PneumoniaDetection", filename="saved_model.pb")
        model = keras.models.load_model(model_path)
        return model
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        return None


with st.spinner("Model is being loaded..."):
    model = load_model()

if model is None:
    st.error("Failed to load model. Please try again.")
    st.stop()

file = st.file_uploader(" ", type=["jpg", "png"])


def import_and_predict(image_data, model):
    img_array = keras.preprocessing.image.img_to_array(image_data)
    img_array = np.expand_dims(img_array, axis=0)
    img_array = img_array/255

    predictions = model.predict(img_array)
    return predictions


if file is None:
    st.text("Please upload an image file")
else:
    try:
        image = keras.preprocessing.image.load_img(file, target_size=(224, 224), color_mode='rgb')
        st.image(image, caption="Uploaded Image.", use_column_width=True)
        predictions = import_and_predict(image, model)
        
        class_names = [
            "Normal",
            "PNEUMONIA",
        ]

        confidence = float(max(predictions[0]) * 100)
        prediction_label = class_names[np.argmax(predictions)]
        
        st.info(f"Confidence: {confidence:.2f}%")
        
        if prediction_label == "Normal":
            st.balloons()
            st.success(f"Result: {prediction_label}")
        else:
            st.warning(f"Result: {prediction_label}")
            
    except Exception as e:
        st.error(f"Error processing image: {str(e)}")