Spaces:
Runtime error
Runtime error
Commit
·
90c54f6
1
Parent(s):
7bb26a8
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel
|
| 3 |
+
import os
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
from sklearn.metrics.pairwise import cosine_similarity, manhattan_distances, euclidean_distances
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
@st.cache
|
| 12 |
+
def load_model():
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained("stanford-crfm/pubmedgpt")
|
| 14 |
+
model = AutoModel.from_pretrained("stanford-crfm/pubmedgpt")
|
| 15 |
+
return tokenizer, model
|
| 16 |
+
|
| 17 |
+
tokenizer, model = load_model()
|
| 18 |
+
pipe = pipeline('feature-extraction', model=model, tokenizer=tokenizer)
|
| 19 |
+
def get_embedding(desc):
|
| 20 |
+
return np.squeeze(pipe(desc)).mean(axis=0)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
st.set_page_config(
|
| 24 |
+
page_title="Clinical Trials Best Match [Eye Diseases]",
|
| 25 |
+
page_icon="🧑💻",
|
| 26 |
+
layout="wide",
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# Constants
|
| 30 |
+
embs = []
|
| 31 |
+
|
| 32 |
+
# Heading
|
| 33 |
+
st.title('Clinical Trials Search')
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# Gene File, 128 dim embeddings
|
| 37 |
+
data = np.load("data.npy")
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
@st.cache(allow_output_mutation=True)
|
| 41 |
+
def get_sim(emb_desc, data):
|
| 42 |
+
ids = []
|
| 43 |
+
scores = []
|
| 44 |
+
for i in data:
|
| 45 |
+
score = cosine_similarity(emb_desc, i['data'])
|
| 46 |
+
ids.append(i['ids'])
|
| 47 |
+
scores.append(score)
|
| 48 |
+
df = pd.DataFrame(data={"url": ids, "scores": scores}).sort_values(by='scores')
|
| 49 |
+
|
| 50 |
+
return df
|
| 51 |
+
|
| 52 |
+
st.subheader("🖮 Enter your clinical trial study description")
|
| 53 |
+
text = st.text_area('Example')
|
| 54 |
+
|
| 55 |
+
with st.spinner():
|
| 56 |
+
emb = get_embedding(text)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
st.subheader("💻 Hit Search")
|
| 60 |
+
|
| 61 |
+
if st.button("Compute"):
|
| 62 |
+
with st.spinner('Searching...'):
|
| 63 |
+
df = get_sim(emb, data=data)
|
| 64 |
+
st.dataframe(df)
|