Spaces:
Runtime error
Runtime error
a
commited on
Commit
Β·
12b0fae
1
Parent(s):
459022c
Upload 2 files
Browse files- app.py +266 -0
- requirements.txt +12 -0
app.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
hide_streamlit_style = """
|
4 |
+
<style>
|
5 |
+
#MainMenu {visibility: hidden;}
|
6 |
+
footer {visibility: hidden;}
|
7 |
+
</style>
|
8 |
+
"""
|
9 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
10 |
+
def paid_version():
|
11 |
+
import os
|
12 |
+
import argparse
|
13 |
+
import shutil
|
14 |
+
from langchain.document_loaders import YoutubeLoader
|
15 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
16 |
+
from langchain.vectorstores import Chroma
|
17 |
+
from langchain.embeddings import OpenAIEmbeddings
|
18 |
+
from langchain.chains import RetrievalQA
|
19 |
+
from langchain.llms import OpenAI
|
20 |
+
import streamlit as st
|
21 |
+
from langchain.chat_models import ChatOpenAI
|
22 |
+
from urllib.parse import urlparse, parse_qs
|
23 |
+
def extract_video_id(youtube_url):
|
24 |
+
try:
|
25 |
+
parsed_url = urlparse(youtube_url)
|
26 |
+
query_params = parse_qs(parsed_url.query)
|
27 |
+
video_id = query_params.get('v', [None])[0]
|
28 |
+
|
29 |
+
return video_id
|
30 |
+
except Exception as e:
|
31 |
+
print(f"Error extracting video ID: {e}")
|
32 |
+
return None
|
33 |
+
def set_openAi_api_key(api_key: str):
|
34 |
+
st.session_state["OPENAI_API_KEY"] = api_key
|
35 |
+
os.environ['OPENAI_API_KEY'] = api_key
|
36 |
+
def openai_api_insert_component():
|
37 |
+
with st.sidebar:
|
38 |
+
st.markdown(
|
39 |
+
"""
|
40 |
+
## Quick Guide π
|
41 |
+
1. Get started by adding your [OpenAI API key](https://platform.openai.com/account/api-keys) belowπ
|
42 |
+
2. Easily input the video url
|
43 |
+
3. Engage with the content - ask questions, seek answersπ¬
|
44 |
+
"""
|
45 |
+
)
|
46 |
+
|
47 |
+
api_key_input = st.text_input("Input your OpenAI API Key",
|
48 |
+
type="password",
|
49 |
+
placeholder="Format: sk-...",
|
50 |
+
help="You can get your API key from https://platform.openai.com/account/api-keys.")
|
51 |
+
|
52 |
+
|
53 |
+
if api_key_input == "" or api_key_input is None:
|
54 |
+
st.sidebar.caption("π :red[Please set your OpenAI API Key here]")
|
55 |
+
|
56 |
+
|
57 |
+
st.caption(":green[Your API is not stored anywhere. It is only used to generate answers to your questions.]")
|
58 |
+
|
59 |
+
set_openAi_api_key(api_key_input)
|
60 |
+
|
61 |
+
def launchpaidversion():
|
62 |
+
openai_api_insert_component()
|
63 |
+
os.environ['OPENAI_API_KEY'] = st.session_state['OPENAI_API_KEY']
|
64 |
+
st.title('MKG: Your Chat with Youtube Assistant')
|
65 |
+
|
66 |
+
|
67 |
+
videourl = st.text_input("Insert The video URL")
|
68 |
+
query = st.text_input("Ask any question about the video")
|
69 |
+
if st.button("Submit Question", type="primary"):
|
70 |
+
video_id = extract_video_id(videourl)
|
71 |
+
loader = YoutubeLoader(video_id)
|
72 |
+
documents = loader.load()
|
73 |
+
|
74 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
75 |
+
documents = text_splitter.split_documents(documents)
|
76 |
+
|
77 |
+
shutil.rmtree('./data')
|
78 |
+
vectordb = Chroma.from_documents(
|
79 |
+
documents,
|
80 |
+
embedding=OpenAIEmbeddings(),
|
81 |
+
persist_directory='./data'
|
82 |
+
)
|
83 |
+
vectordb.persist()
|
84 |
+
|
85 |
+
qa_chain = RetrievalQA.from_chain_type(
|
86 |
+
llm=ChatOpenAI(model_name='gpt-3.5-turbo'),
|
87 |
+
retriever=vectordb.as_retriever(),
|
88 |
+
return_source_documents=True,
|
89 |
+
verbose=False
|
90 |
+
)
|
91 |
+
response = qa_chain(query)
|
92 |
+
st.write(response)
|
93 |
+
|
94 |
+
|
95 |
+
launchpaidversion()
|
96 |
+
def free_version():
|
97 |
+
import torch
|
98 |
+
import os
|
99 |
+
import argparse
|
100 |
+
import shutil
|
101 |
+
from langchain.document_loaders import YoutubeLoader
|
102 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
103 |
+
from langchain.vectorstores import Chroma
|
104 |
+
from langchain.embeddings import OpenAIEmbeddings
|
105 |
+
from langchain.chains import RetrievalQA
|
106 |
+
from langchain.llms import OpenAI
|
107 |
+
import streamlit as st
|
108 |
+
from langchain.chat_models import ChatOpenAI
|
109 |
+
from langchain import HuggingFaceHub
|
110 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
111 |
+
from urllib.parse import urlparse, parse_qs
|
112 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
113 |
+
from transformers import pipeline
|
114 |
+
import textwrap
|
115 |
+
import time
|
116 |
+
from deep_translator import GoogleTranslator
|
117 |
+
from langdetect import detect
|
118 |
+
|
119 |
+
|
120 |
+
def typewriter(text: str, speed: float):
|
121 |
+
container = st.empty()
|
122 |
+
displayed_text = ""
|
123 |
+
|
124 |
+
for char in text:
|
125 |
+
displayed_text += char
|
126 |
+
container.markdown(displayed_text)
|
127 |
+
time.sleep(1/speed)
|
128 |
+
def wrap_text_preserve_newlines(text, width=110):
|
129 |
+
# Split the input text into lines based on newline characters
|
130 |
+
lines = text.split('\n')
|
131 |
+
|
132 |
+
# Wrap each line individually
|
133 |
+
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
134 |
+
|
135 |
+
# Join the wrapped lines back together using newline characters
|
136 |
+
wrapped_text = '\n'.join(wrapped_lines)
|
137 |
+
return wrapped_text
|
138 |
+
def process_llm_response(llm_originalresponse2):
|
139 |
+
#result_text = wrap_text_preserve_newlines(llm_originalresponse2["result"])
|
140 |
+
typewriter(llm_originalresponse2["result"], speed=40)
|
141 |
+
|
142 |
+
def extract_video_id(youtube_url):
|
143 |
+
try:
|
144 |
+
parsed_url = urlparse(youtube_url)
|
145 |
+
query_params = parse_qs(parsed_url.query)
|
146 |
+
video_id = query_params.get('v', [None])[0]
|
147 |
+
|
148 |
+
return video_id
|
149 |
+
except Exception as e:
|
150 |
+
print(f"Error extracting video ID: {e}")
|
151 |
+
return None
|
152 |
+
def set_openAi_api_key(api_key: str):
|
153 |
+
st.session_state["OPENAI_API_KEY"] = api_key
|
154 |
+
os.environ['OPENAI_API_KEY'] = api_key
|
155 |
+
def openai_api_insert_component():
|
156 |
+
with st.sidebar:
|
157 |
+
st.markdown(
|
158 |
+
"""
|
159 |
+
## Quick Guide π
|
160 |
+
1. Get started by adding your [OpenAI API key](https://platform.openai.com/account/api-keys) belowπ
|
161 |
+
2. Easily input the video url
|
162 |
+
3. Engage with the content - ask questions, seek answersπ¬
|
163 |
+
"""
|
164 |
+
)
|
165 |
+
|
166 |
+
api_key_input = st.text_input("Input your OpenAI API Key",
|
167 |
+
type="password",
|
168 |
+
placeholder="Format: sk-...",
|
169 |
+
help="You can get your API key from https://platform.openai.com/account/api-keys.")
|
170 |
+
|
171 |
+
|
172 |
+
if api_key_input == "" or api_key_input is None:
|
173 |
+
st.sidebar.caption("π :red[Please set your OpenAI API Key here]")
|
174 |
+
|
175 |
+
|
176 |
+
st.caption(":green[Your API is not stored anywhere. It is only used to generate answers to your questions.]")
|
177 |
+
|
178 |
+
set_openAi_api_key(api_key_input)
|
179 |
+
|
180 |
+
def launchfreeversion():
|
181 |
+
HUGGINGFACE_API_TOKEN = os.environ['access_code']
|
182 |
+
model_name = "BAAI/bge-base-en"
|
183 |
+
encode_kwargs = {'normalize_embeddings': True}
|
184 |
+
|
185 |
+
st.title('MKG: Your Chat with Youtube Assistant')
|
186 |
+
|
187 |
+
videourl = st.text_input("Insert The video URL", placeholder="Format should be like: https://www.youtube.com/watch?v=pSLeYvld8Mk")
|
188 |
+
query = st.text_input("Ask any question about the video",help="Suggested queries: Summarize the key points of this video - What is this video about - Ask about a specific thing in the video ")
|
189 |
+
st.warning("β οΈ Please Keep in mind that the accuracy of the response relies on the :red[Video's quality] and the :red[prompt's Quality]. Occasionally, the response may not be entirely accurate. Consider using the response as a reference rather than a definitive answer.")
|
190 |
+
|
191 |
+
if st.button("Submit Question", type="primary"):
|
192 |
+
with st.spinner('Processing the Video...'):
|
193 |
+
video_id = extract_video_id(videourl)
|
194 |
+
loader = YoutubeLoader(video_id)
|
195 |
+
documents = loader.load()
|
196 |
+
|
197 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
198 |
+
documents = text_splitter.split_documents(documents)
|
199 |
+
|
200 |
+
|
201 |
+
vectordb = Chroma.from_documents(
|
202 |
+
documents,
|
203 |
+
#embedding = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl",
|
204 |
+
# model_kwargs={"device": "cuda"})
|
205 |
+
embedding= HuggingFaceBgeEmbeddings( model_name=model_name, model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'}, encode_kwargs=encode_kwargs)
|
206 |
+
)
|
207 |
+
|
208 |
+
repo_id = "tiiuae/falcon-7b-instruct"
|
209 |
+
qa_chain = RetrievalQA.from_chain_type(
|
210 |
+
|
211 |
+
llm=HuggingFaceHub(huggingfacehub_api_token=HUGGINGFACE_API_TOKEN,
|
212 |
+
repo_id=repo_id,
|
213 |
+
model_kwargs={"temperature":0.1, "max_new_tokens":1000}),
|
214 |
+
retriever=vectordb.as_retriever(),
|
215 |
+
return_source_documents=False,
|
216 |
+
verbose=False
|
217 |
+
)
|
218 |
+
with st.spinner('Generating Answer...'):
|
219 |
+
llm_response = qa_chain(query)
|
220 |
+
#llm_originalresponse2=llm_response['result']
|
221 |
+
process_llm_response(llm_response)
|
222 |
+
launchfreeversion()
|
223 |
+
|
224 |
+
|
225 |
+
def intro():
|
226 |
+
st.markdown("""
|
227 |
+
# MKG: Your Chat with Youtube Assistant π¬π€
|
228 |
+
|
229 |
+
Welcome to MKG-Assistant, where AI meets Youtube! ππ
|
230 |
+
|
231 |
+
## Base Models
|
232 |
+
|
233 |
+
Q&A-Assistant is built on OpenAI's GPT 3.5 for the premium version and Falcon 7B instruct Model for the free version to enhance your websites browsing experience. Whether you're a student, researcher, or professional, we're here to simplify your interactions with the web. π‘π
|
234 |
+
|
235 |
+
## How to Get Started
|
236 |
+
|
237 |
+
1.Enter the Video URL.
|
238 |
+
2. Enter your API key.(Only if you chose the premium version. Key is not needed in the free version)
|
239 |
+
3. Ask questions using everyday language.
|
240 |
+
4. Get detailed, AI-generated answers.
|
241 |
+
|
242 |
+
5. Enjoy a smarter way to Interact with Youtube!
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
## It is Time to Dive in!
|
247 |
+
|
248 |
+
|
249 |
+
""")
|
250 |
+
page_names_to_funcs = {
|
251 |
+
"Main Page": intro,
|
252 |
+
"Open Source Edition (Free version)": free_version,
|
253 |
+
"Premium edition (Requires Open AI API Key )": paid_version
|
254 |
+
|
255 |
+
}
|
256 |
+
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
|
261 |
+
|
262 |
+
#test
|
263 |
+
demo_name = st.sidebar.selectbox("Choose a version", page_names_to_funcs.keys())
|
264 |
+
page_names_to_funcs[demo_name]()
|
265 |
+
st.sidebar.markdown('<a href="https://www.linkedin.com/in/mohammed-khalil-ghali-11305119b/"> Connect on LinkedIn <img src="https://cdn.jsdelivr.net/gh/devicons/devicon/icons/linkedin/linkedin-original.svg" alt="LinkedIn" width="30" height="30"></a>', unsafe_allow_html=True)
|
266 |
+
st.sidebar.markdown('<a href="https://github.com/khalil-ghali"> Check out my GitHub <img src="https://cdn.jsdelivr.net/gh/devicons/devicon/icons/github/github-original.svg" alt="GitHub" width="30" height="30"></a>', unsafe_allow_html=True)
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--find-links https://download.pytorch.org/whl/torch_stable.html torch==1.2.0+cpu
|
2 |
+
langchain
|
3 |
+
chromadb
|
4 |
+
transformers
|
5 |
+
sentence-transformers
|
6 |
+
InstructorEmbedding
|
7 |
+
streamlit
|
8 |
+
youtube-transcript-api
|
9 |
+
deep_translator
|
10 |
+
langdetect
|
11 |
+
pyPDF
|
12 |
+
#FAISS
|