import streamlit as st import pandas as pd import numpy as np astations = [ ["hongkongobservatory","HKO",22.3022566,114.1722662,"Hong Kong Observatory"], ["kingspark","KP",22.3115408,114.1685675,"Observatory Meteorological Station, King's Park"], ] astationcolumns = ['akey','astationcode','alatitude','alongitude','atitle',] acontainer1 = st.empty() acontainer2 = st.empty() acontainer3 = st.empty() acontainer4 = st.empty() def asubmit(aparam): import datetime from io import StringIO adf2 = aparam["adataframe"] aselecteditem = adf2.loc[adf2["atitle"]==aparam["aselected"], "astationcode"] aselectedrow = adf2[adf2["atitle"]==aparam["aselected"]] aselectedindex = adf2.index[adf2["atitle"]==aparam["aselected"]].tolist() adf3 = pd.DataFrame( [ [ aselectedrow["alatitude"][aselectedindex[0]], aselectedrow["alongitude"][aselectedindex[0]], ] ], columns=['lat', 'lon'] ) aparam["acontainer"].map(adf3) abacklogmax = 10 atoday = datetime.date.today() ayear = int(atoday.strftime("%Y"))-0 amonth = int(atoday.strftime("%m")) amonthday = int(atoday.strftime("%d")) atitles = aparam["acolumntitles"] csvString = "" csvString += (",").join(atitles) adf3 = pd.DataFrame(columns=atitles) for i in range((ayear-abacklogmax),ayear,1): alink = ("https://data.weather.gov.hk/weatherAPI/opendata/opendata.php?dataType=CLMTEMP&year={}&rformat=csv&station={}").format(str(i),aselecteditem.values[0]) adf4 = pd.read_csv(alink, skiprows=[0,1,2], skipfooter=3, engine='python', on_bad_lines='skip') adf4 = adf4.reset_index() # make sure indexes pair with number of rows for index, row in adf4.iterrows(): if (row[2]!=amonth) or (row[3]!=amonthday): continue adate = ("{:02d}.{:02d}.{}").format(row[3], row[2], row[1]) csvString += '\n'+(",").join([adate,str(row[4]),""]) st.write(row[0],adate) adf3 = adf3.append({"Date":adate,"Celsius":(row[4]),}, ignore_index=True) break adf3 = pd.read_csv(StringIO(csvString), sep=",") aparam["acontainer"].dataframe(adf3) adf3.plot.scatter(x='Date', y='Celsius', alpha=.1) return from sklearn.linear_model import LinearRegression # Creating a Linear Regression model on our data lin = LinearRegression() lin.fit(adf3[['Date']], adf3['Celsius']) # Creating a plot ax = adf3.plot.scatter(x='Date', y='Celsius', alpha=.1) ax.plot(adf3['Date'], lin.predict(adf3[['Date']]), c='r') lin.score(adf3[['Date']], adf3['Celsius']) adf = pd.DataFrame( astations, columns=astationcolumns ) aoption = acontainer1.selectbox( 'Which station?', adf['atitle'] ) if acontainer2.button("Submit") == True: asubmit(aparam={"aselected":aoption,"acontainer":acontainer3,"adataframe":adf,"acolumntitles":astationcolumns,})