# 19feb2023 #https://huggingface.co/spaces/keras-io/timeseries_forecasting_for_weather/ import streamlit as st import datetime import pandas as pd import numpy as np backlogmax = 4 today = datetime.date.today() ayear = int(today.strftime("%Y"))-1 amonth = int(today.strftime("%m")) amonthday = int(today.strftime("%d")) st.write(type(ayear)) st.write(("{}-{}-{}").format(ayear,amonth,amonthday)) adf = pd.DataFrame() for i in range(ayear-backlogmax,ayear,1): alink = ("https://data.weather.gov.hk/weatherAPI/opendata/opendata.php?dataType=CLMTEMP&year={}&rformat=csv&station=HKO").format(str(i)) df = pd.read_csv(alink, skiprows=[0,1,2], skipfooter=3, engine='python', error_bad_lines=True) st.write(i) # nparray = np.array([]) df = df.reset_index() # make sure indexes pair with number of rows for index, row in df.iterrows(): if (row[1]!=amonth) or (row[2]!=amonthday): continue st.write(row[0],row[1],row[2],row[3],row[4],amonth,amonthday) adate = ("{}.{}.{} 00:00:00").format(row[2], row[1], row[0]) # np.append([adate,"",row[4],"","","","","","","","","","","",""],nparray) nparray = [adate,"",row[4],"","","","","","","","","","","",""] adf = pd.concat([adf, pd.DataFrame(nparray)], axis=0) break st.dataframe(adf)