a10 commited on
Commit
7bf112c
·
1 Parent(s): 64db5d1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  #%%
2
  from matplotlib.pyplot import title
3
  import tensorflow as tf
@@ -20,7 +21,7 @@ mytitles = ["Date Time","p (mbar)","T (degC)","Tpot (K)","Tdew (degC)","rh (%)",
20
  df = pd.DataFrame(columns=mytitles)
21
  os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
22
  os.environ["CUDA_VISIBLE_DEVICES"] = ""
23
- mybacklogmax = 4
24
 
25
  if ("0" == ""):
26
  uri = "https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip"
@@ -54,8 +55,8 @@ if ("0" != ""):
54
  break
55
  # df = adf.reindex(columns=mytitles)
56
  # df = adf.reset_index()
57
- df = adf.reindex(pd.RangeIndex(0, mybacklogmax).to_series())
58
- st.write(pd.RangeIndex(0, mybacklogmax).to_series())
59
  st.dataframe(df)
60
 
61
  #%%
@@ -172,7 +173,7 @@ val_data = features.loc[train_split:]
172
  start = past + future
173
  end = start + train_split
174
 
175
- x_train = train_data[[i for i in range(mybacklogmax)]].values
176
  y_train = features.iloc[start:end][[1]]
177
 
178
  sequence_length = int(past / step)
@@ -180,7 +181,7 @@ x_end = len(val_data) - past - future
180
 
181
  label_start = train_split + past + future
182
 
183
- x_val = val_data.iloc[:x_end][[i for i in range(mybacklogmax)]].values
184
  y_val = features.iloc[label_start:][[1]]
185
 
186
  dataset_val = keras.preprocessing.timeseries_dataset_from_array(
 
1
+
2
  #%%
3
  from matplotlib.pyplot import title
4
  import tensorflow as tf
 
21
  df = pd.DataFrame(columns=mytitles)
22
  os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
23
  os.environ["CUDA_VISIBLE_DEVICES"] = ""
24
+ mybacklogmax = 5
25
 
26
  if ("0" == ""):
27
  uri = "https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip"
 
55
  break
56
  # df = adf.reindex(columns=mytitles)
57
  # df = adf.reset_index()
58
+ # df = adf.reindex(pd.RangeIndex(0, mybacklogmax).to_series())
59
+ # st.write(pd.RangeIndex(0, mybacklogmax).to_series())
60
  st.dataframe(df)
61
 
62
  #%%
 
173
  start = past + future
174
  end = start + train_split
175
 
176
+ x_train = train_data[[i for i in range(train_split)]].values
177
  y_train = features.iloc[start:end][[1]]
178
 
179
  sequence_length = int(past / step)
 
181
 
182
  label_start = train_split + past + future
183
 
184
+ x_val = val_data.iloc[:x_end][[i for i in range(train_split)]].values
185
  y_val = features.iloc[label_start:][[1]]
186
 
187
  dataset_val = keras.preprocessing.timeseries_dataset_from_array(