Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -58,7 +58,7 @@ if ("0" != ""):
|
|
58 |
break
|
59 |
adf = pd.read_csv(StringIO(csvString), sep=",")
|
60 |
df = adf
|
61 |
-
df.columns = df.columns.to_series().apply(lambda x: x.strip())
|
62 |
# df = adf.reindex(columns=mytitles)
|
63 |
# df = adf.reset_index()
|
64 |
# df = adf.reindex(pd.RangeIndex(0, mybacklogmax).to_series())
|
@@ -182,12 +182,12 @@ end = start + train_split
|
|
182 |
#train_data = train_data.reset_index()
|
183 |
#train_data = train_data.reindex(pd.RangeIndex(0, mybacklogmax).to_series())
|
184 |
#acolumns = train_data.columns
|
185 |
-
|
186 |
-
|
187 |
-
train_data = train_data.reindex(columns=
|
188 |
#train_data[acolumns] = train_data[acolumns].astype(int)
|
189 |
|
190 |
-
x_train = train_data[[i for i in range(
|
191 |
y_train = features.iloc[start:end][[1]]
|
192 |
|
193 |
sequence_length = int(past / step)
|
@@ -195,7 +195,7 @@ x_end = len(val_data) - past - future
|
|
195 |
|
196 |
label_start = train_split + past + future
|
197 |
|
198 |
-
x_val = val_data.iloc[:x_end][[i for i in range(
|
199 |
y_val = features.iloc[label_start:][[1]]
|
200 |
|
201 |
dataset_val = keras.preprocessing.timeseries_dataset_from_array(
|
|
|
58 |
break
|
59 |
adf = pd.read_csv(StringIO(csvString), sep=",")
|
60 |
df = adf
|
61 |
+
# df.columns = df.columns.to_series().apply(lambda x: x.strip())
|
62 |
# df = adf.reindex(columns=mytitles)
|
63 |
# df = adf.reset_index()
|
64 |
# df = adf.reindex(pd.RangeIndex(0, mybacklogmax).to_series())
|
|
|
182 |
#train_data = train_data.reset_index()
|
183 |
#train_data = train_data.reindex(pd.RangeIndex(0, mybacklogmax).to_series())
|
184 |
#acolumns = train_data.columns
|
185 |
+
myrangeend = mybacklogmax
|
186 |
+
mycolumns = pd.RangeIndex(0, myrangeend).to_series()
|
187 |
+
train_data = train_data.reindex(columns=mycolumns)
|
188 |
#train_data[acolumns] = train_data[acolumns].astype(int)
|
189 |
|
190 |
+
x_train = train_data[[i for i in range(myrangeend)]].values
|
191 |
y_train = features.iloc[start:end][[1]]
|
192 |
|
193 |
sequence_length = int(past / step)
|
|
|
195 |
|
196 |
label_start = train_split + past + future
|
197 |
|
198 |
+
x_val = val_data.iloc[:x_end][[i for i in range(myrangeend)]].values
|
199 |
y_val = features.iloc[label_start:][[1]]
|
200 |
|
201 |
dataset_val = keras.preprocessing.timeseries_dataset_from_array(
|