a10 commited on
Commit
417b6fe
·
1 Parent(s): 55565a9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -58,7 +58,7 @@ if ("0" != ""):
58
  break
59
  adf = pd.read_csv(StringIO(csvString), sep=",")
60
  df = adf
61
- df.columns = df.columns.to_series().apply(lambda x: x.strip())
62
  # df = adf.reindex(columns=mytitles)
63
  # df = adf.reset_index()
64
  # df = adf.reindex(pd.RangeIndex(0, mybacklogmax).to_series())
@@ -182,12 +182,12 @@ end = start + train_split
182
  #train_data = train_data.reset_index()
183
  #train_data = train_data.reindex(pd.RangeIndex(0, mybacklogmax).to_series())
184
  #acolumns = train_data.columns
185
- acolumns = pd.RangeIndex(0, mybacklogmax).to_series()
186
- st.write(acolumns)
187
- train_data = train_data.reindex(columns=acolumns)
188
  #train_data[acolumns] = train_data[acolumns].astype(int)
189
 
190
- x_train = train_data[[i for i in range(mybacklogmax)]].values
191
  y_train = features.iloc[start:end][[1]]
192
 
193
  sequence_length = int(past / step)
@@ -195,7 +195,7 @@ x_end = len(val_data) - past - future
195
 
196
  label_start = train_split + past + future
197
 
198
- x_val = val_data.iloc[:x_end][[i for i in range(mybacklogmax)]].values
199
  y_val = features.iloc[label_start:][[1]]
200
 
201
  dataset_val = keras.preprocessing.timeseries_dataset_from_array(
 
58
  break
59
  adf = pd.read_csv(StringIO(csvString), sep=",")
60
  df = adf
61
+ # df.columns = df.columns.to_series().apply(lambda x: x.strip())
62
  # df = adf.reindex(columns=mytitles)
63
  # df = adf.reset_index()
64
  # df = adf.reindex(pd.RangeIndex(0, mybacklogmax).to_series())
 
182
  #train_data = train_data.reset_index()
183
  #train_data = train_data.reindex(pd.RangeIndex(0, mybacklogmax).to_series())
184
  #acolumns = train_data.columns
185
+ myrangeend = mybacklogmax
186
+ mycolumns = pd.RangeIndex(0, myrangeend).to_series()
187
+ train_data = train_data.reindex(columns=mycolumns)
188
  #train_data[acolumns] = train_data[acolumns].astype(int)
189
 
190
+ x_train = train_data[[i for i in range(myrangeend)]].values
191
  y_train = features.iloc[start:end][[1]]
192
 
193
  sequence_length = int(past / step)
 
195
 
196
  label_start = train_split + past + future
197
 
198
+ x_val = val_data.iloc[:x_end][[i for i in range(myrangeend)]].values
199
  y_val = features.iloc[label_start:][[1]]
200
 
201
  dataset_val = keras.preprocessing.timeseries_dataset_from_array(