Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
astations = [ | |
["hongkongobservatory","HKO",22.3022566,114.1722662,"Hong Kong Observatory"], | |
["kingspark","KP",22.3115408,114.1685675,"Observatory Meteorological Station, King's Park"], | |
] | |
astationcolumns = ['akey','astationcode','alatitude','alongitude','atitle',] | |
acontainer1 = st.empty() | |
acontainer2 = st.empty() | |
acontainer3 = st.empty() | |
acontainer4 = st.empty() | |
def asubmit(aparam): | |
import datetime | |
from io import StringIO | |
adf2 = aparam["adataframe"] | |
aselecteditem = adf2.loc[adf2["atitle"]==aparam["aselected"], "astationcode"] | |
aselectedrow = adf2[adf2["atitle"]==aparam["aselected"]] | |
aselectedindex = adf2.index[adf2["atitle"]==aparam["aselected"]].tolist() | |
adf3 = pd.DataFrame( | |
[ | |
[ | |
aselectedrow["alatitude"][aselectedindex[0]], | |
aselectedrow["alongitude"][aselectedindex[0]], | |
] | |
], | |
columns=['lat', 'lon'] | |
) | |
aparam["acontainer"].map(adf3) | |
abacklogmax = 10 | |
atimezone = os.environ['TZ'] | |
# os.environ['TZ'] = 'Europe/London' | |
os.environ['TZ'] = 'Asia/Hong Kong' | |
time.tzset() | |
atoday = datetime.date.today() | |
ayear = int(atoday.strftime("%Y"))-0 | |
amonth = int(atoday.strftime("%m")) | |
amonthday = int(atoday.strftime("%d")) | |
os.environ['TZ'] = atimezone | |
time.tzset() | |
atitles = aparam["acolumntitles"] | |
csvString = "" | |
csvString += (",").join(atitles) | |
adf3 = pd.DataFrame(columns=atitles) | |
for i in range((ayear-abacklogmax),ayear,1): | |
alink = ("https://data.weather.gov.hk/weatherAPI/opendata/opendata.php?dataType=CLMTEMP&year={}&rformat=csv&station={}").format(str(i),aselecteditem.values[0]) | |
adf4 = pd.read_csv(alink, skiprows=[0,1,2], skipfooter=3, engine='python', on_bad_lines='skip') | |
adf4 = adf4.reset_index() # make sure indexes pair with number of rows | |
for index, row in adf4.iterrows(): | |
if (row[2]!=amonth) or (row[3]!=amonthday): | |
continue | |
adate = ("{}{:02d}{:02d}").format(row[1], row[2], row[3]) | |
csvString += '\n'+(",").join([adate,str(row[4])]) | |
st.write(row[0],adate) | |
adf3 = adf3.append({"Date":adate,"Celsius":(row[4]),}, ignore_index=True) | |
break | |
adf3 = pd.read_csv(StringIO(csvString), sep=",") | |
aparam["acontainer"].dataframe(adf3) | |
# Trend projection for same date of current year with past year references of same date | |
from sklearn.linear_model import LinearRegression | |
lr = LinearRegression() | |
lr.fit(adf3[['Date']].astype('float').astype('int32'), adf3['Celsius']) | |
atrendproject = [20230223,] | |
st.dataframe(pd.merge(pd.DataFrame([atrendproject]), pd.DataFrame(lr.predict(np.array([atrendproject]))), left_index=True, right_index=True)) | |
adf = pd.DataFrame( | |
astations, | |
columns=astationcolumns | |
) | |
aoption = acontainer1.selectbox( | |
'Which station?', | |
adf['atitle'] | |
) | |
if acontainer2.button("Submit") == True: | |
asubmit(aparam={"aselected":aoption,"acontainer":acontainer3,"adataframe":adf,"acolumntitles":['Date','Celsius'],}) | |