a10's picture
Update app.py
65b8045
raw
history blame
1.4 kB
# 19feb2023
#https://huggingface.co/spaces/keras-io/timeseries_forecasting_for_weather/
import streamlit as st
import datetime
import pandas as pd
import numpy as np
backlogmax = 4
today = datetime.date.today()
ayear = int(today.strftime("%Y"))-0
amonth = int(today.strftime("%m"))
amonthday = int(today.strftime("%d"))
st.write(type(ayear))
st.write(("{}-{}-{}").format(ayear,amonth,amonthday))
adf = pd.DataFrame(columns=["Date Time","p (mbar)","T (degC)","Tpot (K)","Tdew (degC)","rh (%)","VPmax (mbar)","VPact (mbar)","VPdef (mbar)","sh (g/kg)","H2OC (mmol/mol)","rho (g/m**3)","wv (m/s)","max. wv (m/s)","wd (deg)"])
for i in range(ayear-backlogmax,ayear,1):
alink = ("https://data.weather.gov.hk/weatherAPI/opendata/opendata.php?dataType=CLMTEMP&year={}&rformat=csv&station=HKO").format(str(i))
df = pd.read_csv(alink, skiprows=[0,1,2], skipfooter=3, engine='python', on_bad_lines='skip')
st.write(i)
nparray = np.array([])
df = df.reset_index() # make sure indexes pair with number of rows
for index, row in df.iterrows():
if (row[2]!=amonth) or (row[3]!=amonthday):
continue
st.write(row[0],row[1],row[2],row[3],row[4],amonth,amonthday)
adate = ("{}.{}.{} 00:00:00").format(row[2], row[1], row[0])
nparray = np.vstack(np.array([adate,"",row[4],"","","","","","","","","","","",""]))
break
adf = pd.concat([adf, pd.DataFrame(nparray)], axis=0)
st.dataframe(adf)