File size: 1,249 Bytes
baa2a05
ae61035
baa2a05
d30adf0
baa2a05
ae61035
516120f
baa2a05
ae61035
baa2a05
 
ad8cd91
5eeb54f
 
 
516120f
5eeb54f
 
 
ae61035
b781e81
5eeb54f
ad8cd91
5eeb54f
1946134
516120f
 
993687c
f906b11
1946134
 
5eeb54f
1946134
 
19eaaef
f906b11
1946134
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# 19feb2023
#https://huggingface.co/spaces/keras-io/timeseries_forecasting_for_weather/

import streamlit as st
import datetime
import pandas as pd
import numpy as np

backlogmax = 4
today = datetime.date.today()

ayear = int(today.strftime("%Y"))-1
amonth = int(today.strftime("%m"))
amonthday = int(today.strftime("%d"))

st.write(type(ayear))
st.write(("{}-{}-{}").format(ayear,amonth,amonthday))
adf = pd.DataFrame()

for i in range(ayear-backlogmax,ayear,1):
	alink = ("https://data.weather.gov.hk/weatherAPI/opendata/opendata.php?dataType=CLMTEMP&year={}&rformat=csv&station=HKO").format(str(i))
	df = pd.read_csv(alink, skiprows=[0,1,2], skipfooter=3, engine='python', error_bad_lines=True)
	st.write(i)

#	nparray = np.array([])
	df = df.reset_index()  # make sure indexes pair with number of rows
	for index, row in df.iterrows():
		if (row[2]!=amonth) or (row[3]!=amonthday):
			continue

		st.write(row[0],row[1],row[2],row[3],row[4],amonth,amonthday)
		adate = ("{}.{}.{} 00:00:00").format(row[2], row[1], row[0])
#		np.append([adate,"",row[4],"","","","","","","","","","","",""],nparray)
		nparray = [adate,"",row[4],"","","","","","","","","","","",""]
		adf = pd.concat([adf, pd.DataFrame(nparray)], axis=0)
		break
st.dataframe(adf)