Spaces:
Runtime error
Runtime error
File size: 1,047 Bytes
baa2a05 ae61035 baa2a05 d30adf0 baa2a05 ae61035 516120f baa2a05 ae61035 baa2a05 ad8cd91 5eeb54f 516120f 5eeb54f ae61035 b781e81 5eeb54f ad8cd91 5eeb54f 516120f 5eeb54f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
# 19feb2023
#https://huggingface.co/spaces/keras-io/timeseries_forecasting_for_weather/
import streamlit as st
import datetime
import pandas as pd
import numpy as np
backlogmax = 4
today = datetime.date.today()
ayear = int(today.strftime("%Y"))-1
amonth = int(today.strftime("%m"))
amonthday = int(today.strftime("%d"))
st.write(type(ayear))
st.write(("{}-{}-{}").format(ayear,amonth,amonthday))
adf = pd.DataFrame()
for i in range(ayear-backlogmax,ayear,1):
alink = ("https://data.weather.gov.hk/weatherAPI/opendata/opendata.php?dataType=CLMTEMP&year={}&rformat=csv&station=HKO").format(str(i))
df = pd.read_csv(alink, skiprows=[0,1,2], skipfooter=3, engine='python', error_bad_lines=True)
st.write(i)
nparray = np.array([])
df = df.reset_index() # make sure indexes pair with number of rows
for index, row in df.iterrows():
adate = ("{}.{}.{} 00:00:00").format(row[2], row[1], row[0])
# np.append([adate,,row[4],,,,,,,,,,,,],nparray)
st.write(row[0],row[1],row[2],row[3])
# adf = pd.concat([adf, pd.DataFrame(nparray), axis=0)
|