File size: 1,047 Bytes
baa2a05
ae61035
baa2a05
d30adf0
baa2a05
ae61035
516120f
baa2a05
ae61035
baa2a05
 
ad8cd91
5eeb54f
 
 
516120f
5eeb54f
 
 
ae61035
b781e81
5eeb54f
ad8cd91
5eeb54f
 
516120f
 
5eeb54f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# 19feb2023
#https://huggingface.co/spaces/keras-io/timeseries_forecasting_for_weather/

import streamlit as st
import datetime
import pandas as pd
import numpy as np

backlogmax = 4
today = datetime.date.today()

ayear = int(today.strftime("%Y"))-1
amonth = int(today.strftime("%m"))
amonthday = int(today.strftime("%d"))

st.write(type(ayear))
st.write(("{}-{}-{}").format(ayear,amonth,amonthday))
adf = pd.DataFrame()

for i in range(ayear-backlogmax,ayear,1):
	alink = ("https://data.weather.gov.hk/weatherAPI/opendata/opendata.php?dataType=CLMTEMP&year={}&rformat=csv&station=HKO").format(str(i))
	df = pd.read_csv(alink, skiprows=[0,1,2], skipfooter=3, engine='python', error_bad_lines=True)
	st.write(i)

	nparray = np.array([])
	df = df.reset_index()  # make sure indexes pair with number of rows
	for index, row in df.iterrows():
		adate = ("{}.{}.{} 00:00:00").format(row[2], row[1], row[0])
#		np.append([adate,,row[4],,,,,,,,,,,,],nparray)
		st.write(row[0],row[1],row[2],row[3])
#	adf = pd.concat([adf, pd.DataFrame(nparray), axis=0)