File size: 1,352 Bytes
baa2a05
ae61035
baa2a05
d30adf0
baa2a05
ae61035
516120f
baa2a05
ae61035
baa2a05
 
b05c6d2
5eeb54f
 
 
516120f
5eeb54f
0355558
5eeb54f
ae61035
b781e81
0355558
ad8cd91
5eeb54f
516120f
 
993687c
f906b11
1946134
 
5eeb54f
2587d74
 
f906b11
09139ad
2587d74
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# 19feb2023
#https://huggingface.co/spaces/keras-io/timeseries_forecasting_for_weather/

import streamlit as st
import datetime
import pandas as pd
import numpy as np

backlogmax = 4
today = datetime.date.today()

ayear = int(today.strftime("%Y"))-0
amonth = int(today.strftime("%m"))
amonthday = int(today.strftime("%d"))

st.write(type(ayear))
st.write(("{}-{}-{}").format(ayear,amonth,amonthday))
adf = pd.DataFrame(columns=["Date Time","p (mbar)","T (degC)","Tpot (K)","Tdew (degC)","rh (%)","VPmax (mbar)","VPact (mbar)","VPdef (mbar)","sh (g/kg)","H2OC (mmol/mol)","rho (g/m**3)","wv (m/s)","max. wv (m/s)","wd (deg)"])

for i in range(ayear-backlogmax,ayear,1):
	alink = ("https://data.weather.gov.hk/weatherAPI/opendata/opendata.php?dataType=CLMTEMP&year={}&rformat=csv&station=HKO").format(str(i))
	df = pd.read_csv(alink, skiprows=[0,1,2], skipfooter=3, engine='python', on_bad_lines='skip')
	st.write(i)

	df = df.reset_index()  # make sure indexes pair with number of rows
	for index, row in df.iterrows():
		if (row[2]!=amonth) or (row[3]!=amonthday):
			continue

		st.write(row[0],row[1],row[2],row[3],row[4],amonth,amonthday)
		adate = ("{}.{}.{} 00:00:00").format(row[2], row[1], row[0])
		aarray = [adate,"",row[4],"","","","","","","","","","","",""]
		adf = pd.concat([adf, pd.DataFrame(aarray)], axis=0)
		break

st.dataframe(adf)