File size: 1,386 Bytes
0355558
baa2a05
ae61035
baa2a05
d30adf0
baa2a05
ae61035
516120f
baa2a05
ae61035
baa2a05
 
ad8cd91
5eeb54f
 
 
516120f
5eeb54f
0355558
5eeb54f
ae61035
b781e81
0355558
ad8cd91
5eeb54f
0355558
516120f
 
993687c
f906b11
1946134
 
5eeb54f
0355558
f906b11
0355558
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

# 19feb2023
#https://huggingface.co/spaces/keras-io/timeseries_forecasting_for_weather/

import streamlit as st
import datetime
import pandas as pd
import numpy as np

backlogmax = 4
today = datetime.date.today()

ayear = int(today.strftime("%Y"))-1
amonth = int(today.strftime("%m"))
amonthday = int(today.strftime("%d"))

st.write(type(ayear))
st.write(("{}-{}-{}").format(ayear,amonth,amonthday))
adf = pd.DataFrame(columns=["Date Time","p (mbar)","T (degC)","Tpot (K)","Tdew (degC)","rh (%)","VPmax (mbar)","VPact (mbar)","VPdef (mbar)","sh (g/kg)","H2OC (mmol/mol)","rho (g/m**3)","wv (m/s)","max. wv (m/s)","wd (deg)"])

for i in range(ayear-backlogmax,ayear,1):
	alink = ("https://data.weather.gov.hk/weatherAPI/opendata/opendata.php?dataType=CLMTEMP&year={}&rformat=csv&station=HKO").format(str(i))
	df = pd.read_csv(alink, skiprows=[0,1,2], skipfooter=3, engine='python', on_bad_lines='skip')
	st.write(i)

	nparray = np.array([])
	df = df.reset_index()  # make sure indexes pair with number of rows
	for index, row in df.iterrows():
		if (row[2]!=amonth) or (row[3]!=amonthday):
			continue

		st.write(row[0],row[1],row[2],row[3],row[4],amonth,amonthday)
		adate = ("{}.{}.{} 00:00:00").format(row[2], row[1], row[0])
		np.append([adate,"",row[4],"","","","","","","","","","","",""],nparray)
		break
	adf = pd.concat([adf, pd.DataFrame(nparray)], axis=0)
st.dataframe(adf)