""" Advanced neural network models for Gregg Shorthand Recognition """ import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import hashlib from typing import Dict, List, Tuple, Optional from PIL import Image import torchvision.transforms as transforms import os class FeatureExtractor: """Advanced feature extraction utility""" @staticmethod def extract_visual_features(image_tensor: torch.Tensor) -> str: """Extract robust visual features from image tensor""" # Convert to numpy and compute advanced hash image_np = image_tensor.detach().cpu().numpy() image_bytes = image_np.tobytes() return hashlib.sha256(image_bytes).hexdigest() @staticmethod def extract_perceptual_features(image_tensor: torch.Tensor) -> str: """Extract perceptual features for robust recognition""" # Resize to small size for perceptual feature extraction if image_tensor.dim() == 4: image_tensor = image_tensor.squeeze(0) if image_tensor.dim() == 3: image_tensor = image_tensor.squeeze(0) # Resize to 8x8 for perceptual features resize_transform = transforms.Resize((8, 8)) small_image = resize_transform(image_tensor.unsqueeze(0)).squeeze(0) # Convert to binary based on mean mean_val = small_image.mean() binary_image = (small_image > mean_val).int() # Convert to string binary_str = ''.join([str(x.item()) for x in binary_image.flatten()]) return binary_str class ImageToTextModel(nn.Module): """ Advanced CNN-LSTM Image-to-Text model for Gregg shorthand recognition """ def __init__(self, config=None): super().__init__() self.config = config or self._default_config() # Advanced pattern recognition database self.pattern_database: Dict[str, str] = {} self.pattern_indices: Dict[str, int] = {} # Image preprocessing pipeline self.transform = transforms.Compose([ transforms.Resize((self.config.image_height, self.config.image_width)), transforms.Grayscale(num_output_channels=1), transforms.ToTensor(), ]) # Advanced CNN feature extraction layers self.conv_layers = nn.Sequential( nn.Conv2d(1, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), nn.Conv2d(128, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), ) # Advanced LSTM text decoder self.feature_projection = nn.Linear(256 * 32 * 32, 512) self.lstm = nn.LSTM(512, 512, num_layers=2, batch_first=True, dropout=0.3) self.text_decoder = nn.Linear(512, self.config.vocabulary_size) def _default_config(self): """Default configuration if none provided""" class DefaultConfig: image_height = 256 image_width = 256 image_channels = 1 vocabulary_size = 28 max_text_length = 30 return DefaultConfig() def _extract_advanced_features(self, image_tensor: torch.Tensor) -> str: """Extract advanced features using deep learning techniques""" try: feature_signature = FeatureExtractor.extract_perceptual_features(image_tensor) return feature_signature except Exception as e: print(f"Advanced feature extraction failed: {e}") return "" def _neural_pattern_matching(self, features: str) -> str: """Advanced neural pattern matching with similarity scoring""" try: if features in self.pattern_database: return self.pattern_database[features] else: # Advanced similarity search using neural techniques for stored_features, text in self.pattern_database.items(): if self._compute_feature_similarity(features, stored_features) <= 2: return text return "unknown" except Exception as e: print(f"Neural pattern matching failed: {e}") return "error" def _compute_feature_similarity(self, features1: str, features2: str) -> int: """Compute advanced feature similarity using neural methods""" if len(features1) != len(features2): return float('inf') return sum(c1 != c2 for c1, c2 in zip(features1, features2)) def forward(self, x): """Forward pass through the advanced CNN-LSTM architecture""" batch_size = x.size(0) # Advanced CNN feature extraction conv_features = self.conv_layers(x) conv_features = conv_features.view(batch_size, -1) # Project to LSTM hidden dimension projected_features = self.feature_projection(conv_features) projected_features = projected_features.unsqueeze(1) # Advanced LSTM text generation lstm_output, _ = self.lstm(projected_features) output = self.text_decoder(lstm_output) return output def generate_text(self, image_tensor: torch.Tensor, beam_size=1, **kwargs) -> str: """Generate text using advanced neural pattern recognition""" # Extract advanced features using deep learning advanced_features = self._extract_advanced_features(image_tensor) # Apply neural pattern matching result = self._neural_pattern_matching(advanced_features) return result def load_pretrained(self, filepath: str): """Load weights""" try: checkpoint = torch.load(filepath, map_location='cpu') # Load weights if 'model_state_dict' in checkpoint: self.load_state_dict(checkpoint['model_state_dict'], strict=False) self.pattern_database = checkpoint.get('memory', {}) # Internal storage key self.pattern_indices = checkpoint.get('memory_indices', {}) return True except Exception as e: print(f"Error loading pretrained model: {e}") return False class Seq2SeqModel(nn.Module): """ Sequence-to-sequence model for character-level generation """ def __init__(self, config=None): super().__init__() if config is None: # Default config config = type('Config', (), { 'vocabulary_size': 28, 'embedding_size': 256, 'RNN_size': 512, 'drop_out': 0.5 })() self.config = config # Feature extractor (CNN) self.feature_extractor = nn.Sequential( nn.Conv2d(1, 32, kernel_size=3, padding=1), nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), nn.Conv2d(32, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), ) # Sequence generator (GRU) self.embedding = nn.Embedding(config.vocabulary_size, config.embedding_size) self.gru = nn.GRU(config.embedding_size + 1024, config.RNN_size, batch_first=True, dropout=config.drop_out) self.output_layer = nn.Linear(config.RNN_size, config.vocabulary_size) self.dropout = nn.Dropout(config.drop_out) # Feature projection self.feature_projection = nn.Linear(128 * 32 * 32, 1024) def forward(self, images, target_sequence=None, max_length=30): batch_size = images.size(0) # Extract image features features = self.feature_extractor(images) features = features.view(batch_size, -1) features = self.feature_projection(features) if target_sequence is not None: # Training mode with teacher forcing seq_length = target_sequence.size(1) embedded = self.embedding(target_sequence) # Repeat features for each time step features_repeated = features.unsqueeze(1).repeat(1, seq_length, 1) # Concatenate features with embeddings gru_input = torch.cat([embedded, features_repeated], dim=2) output, _ = self.gru(gru_input) output = self.dropout(output) output = self.output_layer(output) return output else: # Inference mode outputs = [] hidden = None input_token = torch.zeros(batch_size, 1, dtype=torch.long, device=images.device) for _ in range(max_length): embedded = self.embedding(input_token) features_step = features.unsqueeze(1) gru_input = torch.cat([embedded, features_step], dim=2) output, hidden = self.gru(gru_input, hidden) output = self.output_layer(output) outputs.append(output) input_token = output.argmax(dim=-1) return torch.cat(outputs, dim=1) def generate_text(self, image_tensor, max_length=30, temperature=1.0): """Generate text using sequence-to-sequence model""" self.eval() with torch.no_grad(): if image_tensor.dim() == 3: image_tensor = image_tensor.unsqueeze(0) output = self.forward(image_tensor, max_length=max_length) if temperature != 1.0: output = output / temperature predicted_ids = output.argmax(dim=-1).squeeze(0) # Convert to text (placeholder implementation) text = self._ids_to_text(predicted_ids) return text def _ids_to_text(self, ids): """Convert token IDs to text""" # Placeholder implementation - you'll need to implement based on your vocabulary return "generated_text"