a0a7's picture
add real model
e6769bb
"""
Command Line Interface for GreggRecognition
"""
import argparse
import os
import sys
from pathlib import Path
from typing import List
from .recognizer import GreggRecognition
def parse_args():
"""Parse command line arguments"""
parser = argparse.ArgumentParser(
description="Recognize Gregg shorthand from images",
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"input",
help="Input image file or directory containing images"
)
parser.add_argument(
"--model",
choices=["image_to_text", "seq2seq"],
default="image_to_text",
help="Model type to use for recognition"
)
parser.add_argument(
"--model-path",
help="Path to custom model weights file"
)
parser.add_argument(
"--output",
help="Output file to save results (default: print to stdout)"
)
parser.add_argument(
"--device",
choices=["auto", "cpu", "cuda"],
default="auto",
help="Device to use for inference"
)
parser.add_argument(
"--batch-size",
type=int,
default=8,
help="Batch size for processing multiple images"
)
parser.add_argument(
"--beam-size",
type=int,
default=1,
help="Beam size for beam search (image_to_text model only)"
)
parser.add_argument(
"--temperature",
type=float,
default=1.0,
help="Temperature for sampling (seq2seq model only)"
)
parser.add_argument(
"--extensions",
nargs="+",
default=[".jpg", ".jpeg", ".png", ".bmp", ".tiff"],
help="Image file extensions to process when input is a directory"
)
parser.add_argument(
"--verbose",
action="store_true",
help="Enable verbose output"
)
return parser.parse_args()
def find_image_files(input_path: str, extensions: List[str]) -> List[str]:
"""Find all image files in a directory"""
input_path = Path(input_path)
if input_path.is_file():
return [str(input_path)]
elif input_path.is_dir():
image_files = []
for ext in extensions:
pattern = f"*{ext.lower()}"
image_files.extend(input_path.glob(pattern))
pattern = f"*{ext.upper()}"
image_files.extend(input_path.glob(pattern))
return [str(f) for f in sorted(set(image_files))]
else:
raise FileNotFoundError(f"Input path does not exist: {input_path}")
def main():
"""Main CLI function"""
args = parse_args()
try:
# Find input files
image_files = find_image_files(args.input, args.extensions)
if not image_files:
print(f"No image files found in: {args.input}")
sys.exit(1)
if args.verbose:
print(f"Found {len(image_files)} image file(s)")
print(f"Using model: {args.model}")
print(f"Device: {args.device}")
# Initialize recognizer
recognizer = GreggRecognition(
model_type=args.model,
device=args.device,
model_path=args.model_path
)
if args.verbose:
model_info = recognizer.get_model_info()
print(f"Model parameters: {model_info['num_parameters']:,}")
# Process images
if len(image_files) == 1:
# Single image
result = recognizer.recognize(
image_files[0],
beam_size=args.beam_size,
temperature=args.temperature
)
results = [(image_files[0], result)]
else:
# Multiple images
if args.verbose:
print(f"Processing {len(image_files)} images...")
recognized_texts = recognizer.batch_recognize(
image_files,
batch_size=args.batch_size,
beam_size=args.beam_size,
temperature=args.temperature
)
results = list(zip(image_files, recognized_texts))
# Output results
if args.output:
# Write to file
with open(args.output, 'w', encoding='utf-8') as f:
for image_path, text in results:
f.write(f"{image_path}\t{text}\n")
if args.verbose:
print(f"Results saved to: {args.output}")
else:
# Print to stdout
for image_path, text in results:
if len(image_files) == 1:
print(text)
else:
print(f"{os.path.basename(image_path)}: {text}")
except Exception as e:
print(f"Error: {str(e)}", file=sys.stderr)
sys.exit(1)
if __name__ == "__main__":
main()