Spaces:
Running
Running
File size: 12,667 Bytes
686cd54 703d114 686cd54 703d114 686cd54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import numpy as np
from math import pow
from nltk.corpus import wordnet as wn
from utilities_language_general.rus_constants import nlp, PHRASES, LEVEL_NUMBERS
def eucledian_distance(x, y):
return np.sqrt(np.sum((x - y) ** 2))
def cosine_similarity(x, y):
out = np.dot(x, y) / (np.sqrt(np.dot(x, x)) * np.sqrt(np.dot(y, y)))
if str(out) != 'nan':
return out
return None
def get_vector_for_token(model, token):
vector = None
splitted = token.split('_')
token_list = [f'{splitted[i]}_{splitted[i+1]}' for i in range(len(splitted)-1)]
if model.has_index_for(token):
vector = model.get_vector(token)
else:
try:
vector = model.get_mean_vector(token_list)
except ValueError:
return None
return vector
def compute_metric(func, vector1, vector2):
if vector1 is not None and vector2 is not None:
return func(vector1, vector2)
else:
return None
def compute_positive_cos(x, y):
cos_sim = cosine_similarity(x, y)
if cos_sim:
return (cos_sim + 1) / 2
else:
return None
def addition_metric(substitute, target, context):
substitute_target_cos = compute_metric(cosine_similarity, substitute, target)
if not substitute_target_cos:
return None
if not context:
return None
context_vectors = []
for context_tk in context:
substitute_context_cos = compute_metric(cosine_similarity, substitute, context_tk)
if substitute_context_cos:
context_vectors.append(substitute_context_cos)
sum_of_context_vectors = np.sum(context_vectors)
metric = (substitute_target_cos + sum_of_context_vectors) / (len(context) + 1)
return metric
def balanced_addition_metric(substitute, target, context):
substitute_target_cos = compute_metric(cosine_similarity, substitute, target)
if not substitute_target_cos:
return None
if not context:
return None
context_vectors = []
for context_tk in context:
substitute_context_cos = compute_metric(cosine_similarity, substitute, context_tk)
if substitute_context_cos:
context_vectors.append(substitute_context_cos)
sum_of_context_vectors = np.sum(context_vectors)
context_len = len(context)
metric = (context_len * substitute_target_cos + sum_of_context_vectors) / (2 * context_len)
return metric
def multiplication_metric(substitute, target, context):
substitute_target_cos = compute_metric(compute_positive_cos, substitute, target)
if not substitute_target_cos:
return None
if not context:
return None
context_vectors = []
for context_tk in context:
substitute_context_positive_cos = compute_metric(compute_positive_cos, substitute, context_tk)
if substitute_context_positive_cos:
context_vectors.append(substitute_context_positive_cos)
prod_of_context_vectors = np.prod(context_vectors)
try:
metric = pow((substitute_target_cos + prod_of_context_vectors), 1 / (len(context) + 1))
except ValueError:
return None
return metric
def balanced_multiplication_metric(substitute, target, context):
substitute_target_cos = compute_metric(compute_positive_cos, substitute, target)
if not substitute_target_cos:
return None
if not context:
return None
context_vectors = []
for context_tk in context:
substitute_context_positive_cos = compute_metric(compute_positive_cos, substitute, context_tk)
if substitute_context_positive_cos:
context_vectors.append(substitute_context_positive_cos)
prod_of_context_vectors = np.prod(context_vectors)
context_len = len(context)
try:
metric = pow((pow(substitute_target_cos, context_len) + prod_of_context_vectors), 1 / (2 * context_len))
except ValueError:
return None
return metric
def bind_phrases(context_list):
context = []
previous_was_phrase = False
for i in range(len(context_list)-1):
phrase_candidate = f'{context_list[i]}_{context_list[i+1]}'
if phrase_candidate in PHRASES and not previous_was_phrase:
context.append(phrase_candidate)
previous_was_phrase = True
else:
if not previous_was_phrase:
context.append(context_list[i])
previous_was_phrase = False
if context_list:
if not context:
context.append(context_list[-1])
elif not context_list[-1] in context[-1]:
context.append(context_list[-1])
return context
def get_context_windows(doc, target_text, window_size):
sentence_str = doc.text
sentence_masked = sentence_str.lower().replace(target_text.lower().strip(), ' [MASK] ')
alpha_tokens_lemma_pos = [f'{tk.lemma_.lower()}_{tk.pos_}' for tk in nlp(sentence_masked) if tk.text.isalpha()]
alpha_tokens_lemma_pos_no_stop = [f'{tk.lemma_.lower()}_{tk.pos_}' for tk in nlp(sentence_masked) if tk.text.isalpha() and not tk.is_stop]
try:
mask_token_index = alpha_tokens_lemma_pos.index('mask_PROPN')
mask_token_index_no_stop = alpha_tokens_lemma_pos_no_stop.index('mask_PROPN')
except ValueError:
return None
left_border = max(mask_token_index-window_size, 0)
right_border = min(mask_token_index+window_size, len(alpha_tokens_lemma_pos))
l_context = alpha_tokens_lemma_pos[left_border:mask_token_index]
r_context = alpha_tokens_lemma_pos[mask_token_index+1:right_border+1]
left_border_no_stop = max(mask_token_index_no_stop-window_size, 0)
right_border_no_stop = min(mask_token_index_no_stop+window_size, len(alpha_tokens_lemma_pos_no_stop))
l_context_no_stop = alpha_tokens_lemma_pos_no_stop[left_border_no_stop:mask_token_index_no_stop]
r_context_no_stop = alpha_tokens_lemma_pos_no_stop[mask_token_index_no_stop+1:right_border_no_stop+1]
return (bind_phrases(l_context) + bind_phrases(r_context), bind_phrases(l_context_no_stop) + bind_phrases(r_context_no_stop))
def get_context_linked_words(doc, target_position, target_text):
answer_list = target_text.split(' ')
context_words = []
for tk in doc:
if tk.text.isalpha():
if (tk.text in answer_list and abs(target_position - tk.idx) <= sum([len(t) for t in answer_list])):
context_words.extend([t for t in tk.subtree if t.text.isalpha() and not t.is_stop])
context_words.extend([t for t in tk.children if t.text.isalpha() and not t.is_stop])
context_words.extend([t for t in tk.ancestors if t.text.isalpha() and not t.is_stop])
context_words = [(tk, f'{tk.lemma_}_{tk.pos_}') for tk in sorted(set(context_words), key=lambda tk: tk.i) if tk.text not in answer_list]
context = []
previous_was_phrase = False
for i in range(len(context_words)-1):
phrase_candidate = f'{context_words[i][1]}_{context_words[i+1][1]}'
if phrase_candidate in PHRASES and not previous_was_phrase and abs(context_words[i][0].i - context_words[i+1][0].i) <=1:
context.append(phrase_candidate)
previous_was_phrase = True
else:
if not previous_was_phrase:
context.append(context_words[i][1])
if context and context_words:
if not context_words[-1][1] in context[-1]:
context.append(context_words[-1][1])
elif context_words:
context.append(context_words[-1][1])
return context
def compute_all_necessary_metrics(target_lemma, target_text, target_position, substitute_lemma, doc, model_type:str, model=None):
if model_type == 'bert':
return
target_vector = get_vector_for_token(model, target_lemma)
substitute_vector = get_vector_for_token(model, substitute_lemma)
cosimilarity = compute_metric(cosine_similarity, substitute_vector, target_vector)
eucledian_similarity = compute_metric(eucledian_distance, substitute_vector, target_vector)
context_window3, context_window3_no_stop = get_context_windows(doc=doc, target_text=target_text, window_size=3)
context_window5, context_window5_no_stop = get_context_windows(doc=doc, target_text=target_text, window_size=5)
context_window_synt = get_context_linked_words(doc, target_position, target_text)
context_window3 = [get_vector_for_token(model, token) for token in context_window3]
context_window3_no_stop = [get_vector_for_token(model, token) for token in context_window3_no_stop]
context_window5 = [get_vector_for_token(model, token) for token in context_window5]
context_window5_no_stop = [get_vector_for_token(model, token) for token in context_window5_no_stop]
context_window_synt = [get_vector_for_token(model, token) for token in context_window_synt]
add_metric_window3 = addition_metric(target_vector, substitute_vector, context_window3)
bal_add_metric_window3 = balanced_addition_metric(target_vector, substitute_vector, context_window3)
add_metric_window3_no_stop = addition_metric(target_vector, substitute_vector, context_window3_no_stop)
bal_add_metric_window3_no_stop = balanced_addition_metric(target_vector, substitute_vector, context_window3_no_stop)
mult_metric_window3 = multiplication_metric(target_vector, substitute_vector, context_window3)
bal_mult_metric_window3 = balanced_multiplication_metric(target_vector, substitute_vector, context_window3)
mult_metric_window3_no_stop = multiplication_metric(target_vector, substitute_vector, context_window3_no_stop)
bal_mult_metric_window3_no_stop = balanced_multiplication_metric(target_vector, substitute_vector, context_window3_no_stop)
add_metric_window5 = addition_metric(target_vector, substitute_vector, context_window5)
bal_add_metric_window5 = balanced_addition_metric(target_vector, substitute_vector, context_window5)
add_metric_window5_no_stop = addition_metric(target_vector, substitute_vector, context_window5_no_stop)
bal_add_metric_window5_no_stop = balanced_addition_metric(target_vector, substitute_vector, context_window5_no_stop)
mult_metric_window5 = multiplication_metric(target_vector, substitute_vector, context_window5)
bal_mult_metric_window5 = balanced_multiplication_metric(target_vector, substitute_vector, context_window5)
mult_metric_window5_no_stop = multiplication_metric(target_vector, substitute_vector, context_window5_no_stop)
bal_mult_metric_window5_no_stop = balanced_multiplication_metric(target_vector, substitute_vector, context_window5_no_stop)
add_metric_synt = addition_metric(target_vector, substitute_vector, context_window_synt)
bal_add_metric_synt = balanced_addition_metric(target_vector, substitute_vector, context_window_synt)
mult_metric_synt = multiplication_metric(target_vector, substitute_vector, context_window_synt)
bal_mult_metric_synt = balanced_multiplication_metric(target_vector, substitute_vector, context_window_synt)
return (cosimilarity, eucledian_similarity,
add_metric_window3, bal_add_metric_window3,
mult_metric_window3, bal_mult_metric_window3,
add_metric_window3_no_stop, bal_add_metric_window3_no_stop,
mult_metric_window3_no_stop, bal_mult_metric_window3_no_stop,
add_metric_window5, bal_add_metric_window5,
mult_metric_window5, bal_mult_metric_window5,
add_metric_window5_no_stop, bal_add_metric_window5_no_stop,
mult_metric_window5_no_stop, bal_mult_metric_window5_no_stop,
add_metric_synt, bal_add_metric_synt,
mult_metric_synt, bal_mult_metric_synt)
def make_decision(doc, model_type, scaler, classifier, pos_dict, level, target_lemma, target_text, target_pos, target_position,
substitute_lemma, substitute_pos, model=None, bert_score=None):
# return True
metrics = compute_all_necessary_metrics(target_lemma=target_lemma, target_text=target_text, target_position=target_position,
substitute_lemma=substitute_lemma, doc=doc, model_type=model_type, model=model)
target_multiword, substitute_multiword = target_lemma.count('_') > 2, substitute_lemma.count('_') > 2
if model_type == 'bert':
scaled_data = scaler.transform([[bert_score]]).tolist()[0]
else:
scaled_data = scaler.transform([metrics]).tolist()[0]
data = [LEVEL_NUMBERS.get(level), pos_dict.get(target_pos), target_multiword, pos_dict.get(substitute_pos), substitute_multiword] + scaled_data
predict = classifier.predict(data)
return bool(predict)
|