File size: 10,632 Bytes
efbe6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import datetime
from io import StringIO
from random import sample
from collections import defaultdict
from streamlit import progress as st_progress
from utilities_language_general.rus_constants import st
from streamlit.elements import WIDGETS as ST_WIDGETS
from utilities_language_bert.rus_sentence_bert import TASK
from utilities_language_general.rus_constants import load_bert
from utilities_language_general.rus_utils import prepare_tasks
from utilities_language_bert.rus_sentence_bert import SENTENCE
import utilities_language_general.rus_constants as esp_constants
from utilities_language_general.rus_utils import prepare_target_words
from utilities_language_general.rus_utils import compute_frequency_dict
from streamlit.runtime.uploaded_file_manager import UploadedFile
from utilities_language_general.rus_constants import BAD_USER_TARGET_WORDS


def main_workflow_bert(
        file: UploadedFile or None,
        text: str,
        logs: ST_WIDGETS,
        logs_d: ST_WIDGETS,
        progress: st_progress,
        progress_s: st_progress,
        level: str,
        tw_mode_automatic_mode: str,
        target_words: str,
        num_distractors: int,
        save_name: str,
        global_bad_target_words=BAD_USER_TARGET_WORDS):

    # Clear bad target_words each time
    global_bad_target_words = []

    # Define main global variables
    logs.write()
    GLOBAL_DISTRACTORS = set()
    MAX_FREQUENCY = 0

    mask_filler = load_bert()

    # Get input text
    if file is not None:
        stringio = StringIO(file.getvalue().decode("utf-8"))
        current_text = stringio.read()
    elif text != '':
        current_text = text
    else:
        esp_constants.st.warning('Вы и текст не вставили, и файл не выбрали 😢')
        current_text = ''
        esp_constants.st.stop()

    # Process target words
    if tw_mode_automatic_mode == 'Самостоятельно':
        if target_words == '':
            esp_constants.st.warning('Вы не ввели целевые слова')
            esp_constants.st.stop()
        # Cannot make up paradigm, so only USER_TARGET_WORDS is used
        USER_TARGET_WORDS = prepare_target_words(target_words)
        tw_mode_automatic_mode = False
    else:
        USER_TARGET_WORDS = None
        tw_mode_automatic_mode = True

    # Text preprocessing
    original_text = current_text
    current_text = current_text.replace('.', '. ').replace('. . .', '...').replace('  ', ' ').replace('…', '...') \
        .replace('…', '...').replace('—', '-').replace('\u2014', '-').replace('—', '-').replace('-\n', '') \
        .replace('\n', '%^&*')
    current_text_sentences = [sent.text.strip() for sent in esp_constants.nlp(current_text).sents]
    logs.success('Получили Ваш текст!')
    progress.progress(10)

    # Compute frequency dict
    FREQ_DICT = compute_frequency_dict(current_text)

    # Get maximum frequency (top 5% barrier)
    _frequency_barrier_percent = 0.05
    for j, tp in enumerate(FREQ_DICT.items()):
        if j < len(FREQ_DICT) * _frequency_barrier_percent:
            MAX_FREQUENCY = tp[1]
    MAX_FREQUENCY = 3 if MAX_FREQUENCY < 3 else MAX_FREQUENCY
    logs.success("Посчитали немного статистики!")
    progress.progress(15)

    # Choose necessary language minimum according to user's input
    if level == 'A1':
        target_minimum = esp_constants.a1_target_set
        distractor_minimum = esp_constants.a1_distractor_set
    elif level == 'A2':
        target_minimum = esp_constants.a2_target_set
        distractor_minimum = esp_constants.a2_distractor_set
    elif level == 'B1':
        target_minimum = esp_constants.b1_target_set
        distractor_minimum = esp_constants.b1_distractor_set
    elif level == 'B2':
        target_minimum = esp_constants.b2_target_set
        distractor_minimum = esp_constants.b2_distractor_set
    elif level == 'C1':
        target_minimum = esp_constants.c1_target_set
        distractor_minimum = esp_constants.c1_distractor_set
    elif level == 'C2':
        target_minimum = esp_constants.c2_target_set
        distractor_minimum = esp_constants.c2_distractor_set
    elif level == 'Без уровня':
        target_minimum = None
        distractor_minimum = None
    else:
        target_minimum = None
        distractor_minimum = None
        logs.error('Вы не выбрали языковой уровень!')
        st.stop()

    # Start generation process
    workflow = [SENTENCE(original=sent.strip(), n_sentence=num, max_num_distractors=num_distractors)
                for num, sent in enumerate(current_text_sentences)]
    logs.success("Запускаем процесс генерации заданий!")
    progress.progress(20)

    for sentence in workflow:
        sentence.lemmatize_sentence()

    for sentence in workflow:
        sentence.bind_phrases()
    logs.success("Подготовили предложения для дальнейшей работы!")
    progress.progress(30)

    for j, sentence in enumerate(workflow):
        sentence.search_target_words(target_words_automatic_mode=tw_mode_automatic_mode,
                                     target_minimum=target_minimum,
                                     user_target_words=USER_TARGET_WORDS,
                                     frequency_dict=FREQ_DICT)
        progress.progress(int(30 + (j * (20 / len(workflow)))))
    progress_s.progress(50)
    DUPLICATE_TARGET_WORDS = defaultdict(list)
    for sentence in workflow:
        for target_word in sentence.target_words:
            DUPLICATE_TARGET_WORDS[target_word['lemma']].append(target_word)
    RESULT_TW = []
    for tw_lemma, tw_data in DUPLICATE_TARGET_WORDS.items():
        RESULT_TW.append(sample(tw_data, 1)[0])
    for sentence in workflow:
        for target_word in sentence.target_words:
            if target_word not in RESULT_TW:
                global_bad_target_words.append(target_word['original_text'])
                sentence.target_words.remove(target_word)
    progress_s.progress(55)
    logs.success('Выбрали слова-пропуски!')

    for sentence in workflow:
        for i, target_word in enumerate(sentence.target_words):
            temp = current_text_sentences[:]
            temp[sentence.n_sentence] = target_word['masked_sentence']
            sentence.text_with_masked_task = ' '.join(temp).replace('%^&*', '\n')
            sentence.target_words[i]['text_with_masked_task'] = ' '.join(temp).replace('%^&*', '\n')

    for sentence in workflow:
        sentence.filter_target_words(target_words_automatic_mode=tw_mode_automatic_mode)
    progress_s.progress(60)

    RESULT_TASKS = []
    for sentence in workflow:
        for target_word in sentence.target_words:
            task = TASK(task_data=target_word, max_num_distractors=num_distractors)
            RESULT_TASKS.append(task)

    for num, task in enumerate(RESULT_TASKS):
        task.attach_distractors_to_target_word(model=mask_filler, level_name=level,
                                               global_distractors=GLOBAL_DISTRACTORS,
                                               distractor_minimum=distractor_minimum,
                                               max_frequency=MAX_FREQUENCY)
        logs_d.success(
            f'Обработали {num}/{len(RESULT_TASKS)} целевых слов!')
    logs_d.success(
        f'Обработали {len(RESULT_TASKS)}/{len(RESULT_TASKS)} целевых слов!')
    progress_s.progress(65)
    logs.success('Подобрали неправильные варианты!')

    for task in RESULT_TASKS:
        task.inflect_distractors()
    progress_s.progress(70)
    logs.success('Просклоняли и проспрягали неправильные варианты!')

    for task in RESULT_TASKS:
        task.sample_distractors(num_distractors=num_distractors)
    progress_s.progress(75)
    RESULT_TASKS = list(filter(lambda t: not t.bad_target_word, RESULT_TASKS))

    for task in RESULT_TASKS[::-1]:
        if task.bad_target_word:
            RESULT_TASKS.remove(task)

    # Compute number of final tasks
    if len(RESULT_TASKS) >= 20:
        NUMBER_TASKS = 20
    else:
        if len(RESULT_TASKS) >= 15:
            NUMBER_TASKS = 15
        else:
            if len(RESULT_TASKS) >= 10:
                NUMBER_TASKS = 10
            else:
                NUMBER_TASKS = len(RESULT_TASKS)
    RESULT_TASKS = sample(RESULT_TASKS, NUMBER_TASKS)
    RESULT_TASKS = sorted(RESULT_TASKS, key=lambda t: (t.sentence_number, t.position_in_sentence))

    for task in RESULT_TASKS:
        task.compile_task(max_num_distractors=num_distractors)
    progress_s.progress(85)
    logs.success('Отобрали лучшие задания!')

    TEXT_WITH_GAPS = []
    VARIANTS = []
    tasks_counter = 1
    for i, sentence in enumerate(current_text_sentences):
        for task in RESULT_TASKS:
            if task.sentence_text == sentence:
                sentence = sentence.replace(task.original_text, f'__________({tasks_counter})')
                VARIANTS.append(task.variants)
                tasks_counter += 1
        TEXT_WITH_GAPS.append(sentence)
    del RESULT_TASKS

    logs.success('Сейчас все будет готово!')
    progress_s.progress(90)

    TEXT_WITH_GAPS = ' '.join([sentence for sentence in TEXT_WITH_GAPS]).replace('%^&*', '\n')
    PREPARED_TASKS = prepare_tasks(VARIANTS)
    STUDENT_OUT = f'{TEXT_WITH_GAPS}\n\n{"=" * 70}\n\n{PREPARED_TASKS["TASKS_STUDENT"]}'
    TEACHER_OUT = f'{TEXT_WITH_GAPS}\n\n{"=" * 70}\n\n{PREPARED_TASKS["TASKS_TEACHER"]}\n\n{"=" * 70}\n\n' \
                  f'{PREPARED_TASKS["KEYS_ONLY"]}'
    TOTAL_OUT = f'{original_text}\n\n{"$" * 70}\n\n{STUDENT_OUT}\n\n{"=" * 70}\n\n{PREPARED_TASKS["TASKS_TEACHER"]}' \
                f'\n\n{"$" * 70}\n\n{PREPARED_TASKS["KEYS_ONLY"]}'
    logs.success('Сейчас все будет готово!')
    progress_s.progress(90)
    save_name = save_name if save_name != '' else f'{str(datetime.datetime.now())[:-7]}_{original_text[:20]}'
    out = {
        'name': save_name,
        'STUDENT_OUT': STUDENT_OUT,
        'TEACHER_OUT': TEACHER_OUT,
        'TEXT_WITH_GAPS': TEXT_WITH_GAPS,
        'TASKS_ONLY': PREPARED_TASKS["RAW_TASKS"],
        'KEYS_ONLY': PREPARED_TASKS["KEYS_ONLY"],
        'KEYS_ONLY_RAW': PREPARED_TASKS["RAW_KEYS_ONLY"],
        'TOTAL_OUT': TOTAL_OUT,
        'ORIGINAL': original_text,
        'BAD_USER_TARGET_WORDS': sorted(set(global_bad_target_words))
    }
    return out