Spaces:
Runtime error
Runtime error
Zymrael
commited on
Commit
·
f34e8aa
1
Parent(s):
9118588
first
Browse files- app.py +225 -0
- requirements.txt +7 -0
app.py
ADDED
|
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
from einops import rearrange, repeat
|
| 9 |
+
|
| 10 |
+
import torchvision.transforms.functional as ttf
|
| 11 |
+
from timm.models.convmixer import ConvMixer
|
| 12 |
+
import functorch
|
| 13 |
+
|
| 14 |
+
def img_to_patches(im, patch_h, patch_w):
|
| 15 |
+
"B, C, H, W -> B, C, D, h_patch, w_patch"
|
| 16 |
+
bs, c, h, w = im.shape
|
| 17 |
+
im = im.unfold(-1, patch_h, patch_w).unfold(2, patch_h, patch_w)
|
| 18 |
+
im = im.permute(0, 1, 2, 3, 5, 4)
|
| 19 |
+
im = im.contiguous().view(bs, c, -1, patch_h, patch_w)
|
| 20 |
+
return im
|
| 21 |
+
|
| 22 |
+
def patches_to_img(patches, num_patch_h, num_patch_w):
|
| 23 |
+
"B, C, D, h_patch, w_patch -> B, C, H, W"
|
| 24 |
+
bs, c, d, h, w = patches.shape
|
| 25 |
+
patches = patches.view(bs, c, num_patch_h, num_patch_w, h, w)
|
| 26 |
+
# fold patches
|
| 27 |
+
patches = torch.cat([patches[..., k, :, :] for k in range(num_patch_w)], dim=-1)
|
| 28 |
+
x = torch.cat([patches[..., k, :, :] for k in range(num_patch_h)], dim=-2)
|
| 29 |
+
return x
|
| 30 |
+
|
| 31 |
+
def vmapped_rotate(x, angle, in_dims=1):
|
| 32 |
+
"B, C, D, H, W -> B, C, D, H, W"
|
| 33 |
+
rotate_ = functorch.vmap(ttf.rotate, in_dims=in_dims, out_dims=in_dims)
|
| 34 |
+
return rotate_(x, angle=angle)
|
| 35 |
+
|
| 36 |
+
class CollageOperator2d(nn.Module):
|
| 37 |
+
|
| 38 |
+
def __init__(self, res, rh, rw, dh=None, dw=None, use_augmentations=False):
|
| 39 |
+
"""Collage Operator for two-dimensional data. Given a fractal code, it outputs the corresponding fixed-point.
|
| 40 |
+
|
| 41 |
+
Args:
|
| 42 |
+
res (int): Spatial resolutions of input (and output) data.
|
| 43 |
+
rh (int): Height of range (target) square patches.
|
| 44 |
+
rw (int): Width of range (target) square patches.
|
| 45 |
+
dh (int, optional): Height of range domain (source) patches. Defaults to `res`.
|
| 46 |
+
dw (int, optional): Width of range domain (source) patches. Defaults to `res`.
|
| 47 |
+
use_augmentations (bool, optional): Use augmentations of domain square patches at each decoding iteration. Defaults to `False`.
|
| 48 |
+
"""
|
| 49 |
+
super().__init__()
|
| 50 |
+
self.dh, self.dw = dh, dw
|
| 51 |
+
if self.dh is None: self.dh = res
|
| 52 |
+
if self.dw is None: self.dw = res
|
| 53 |
+
|
| 54 |
+
# 5 refers to the 5 copies of domain patches generated with the current choice of augmentations:
|
| 55 |
+
# 3 rotations (90, 180, 270), horizontal flips and vertical flips.
|
| 56 |
+
self.n_aug_transforms = 9 if use_augmentations else 0
|
| 57 |
+
|
| 58 |
+
# precompute useful quantities related to the partitioning scheme into patches, given
|
| 59 |
+
# the desired `dh`, `dw`, `rh`, `rw`.
|
| 60 |
+
partition_info = self.collage_partition_info(res, self.dh, self.dw, rh, rw)
|
| 61 |
+
self.n_dh, self.n_dw, self.n_rh, self.n_rw, self.h_factors, self.w_factors, self.n_domains, self.n_ranges = partition_info
|
| 62 |
+
|
| 63 |
+
# At each step of the collage, all (source) domain patches are pooled down to the size of range (target) patches.
|
| 64 |
+
# Notices how the pooling factors do not change if one decodes at higher resolutions, since both domain and range
|
| 65 |
+
# patch sizes are multiplied by the same integer.
|
| 66 |
+
self.pool = nn.AvgPool3d(kernel_size=(1, self.h_factors, self.w_factors), stride=(1, self.h_factors, self.w_factors))
|
| 67 |
+
|
| 68 |
+
def collage_operator(self, z, collage_weight, collage_bias):
|
| 69 |
+
"""Collage Operator (decoding). Performs the steps described in Def. 3.1, Figure 2."""
|
| 70 |
+
|
| 71 |
+
# Given the current iterate `z`, we split it into domain patches according to the partitioning scheme.
|
| 72 |
+
domains = img_to_patches(z)
|
| 73 |
+
|
| 74 |
+
# Pool domains (pre augmentation) to range patch sizes.
|
| 75 |
+
pooled_domains = self.pool(domains)
|
| 76 |
+
|
| 77 |
+
# If needed, produce additional candidate domain patches as augmentations of existing domains.
|
| 78 |
+
# Auxiliary learned feature maps / patches are also introduced here.
|
| 79 |
+
if self.n_aug_transforms > 1:
|
| 80 |
+
pooled_domains = self.generate_candidates(pooled_domains)
|
| 81 |
+
|
| 82 |
+
pooled_domains = repeat(pooled_domains, 'b c d h w -> b c d r h w', r=self.num_ranges)
|
| 83 |
+
|
| 84 |
+
# Apply the affine maps to domain patches
|
| 85 |
+
range_domains = torch.einsum('bcdrhw, bcdr -> bcrhw', pooled_domains, collage_weight)
|
| 86 |
+
range_domains = range_domains + collage_bias[..., None, None]
|
| 87 |
+
|
| 88 |
+
# Reconstruct data by "composing" the output patches back together (collage!).
|
| 89 |
+
z = patches_to_img(range_domains)
|
| 90 |
+
|
| 91 |
+
return z
|
| 92 |
+
|
| 93 |
+
def decode_step(self, z, weight, bias, superres_factor, return_patches=False):
|
| 94 |
+
"""Single Collage Operator step. Performs the steps described in:
|
| 95 |
+
https://arxiv.org/pdf/2204.07673.pdf (Def. 3.1, Figure 2).
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
# Given the current iterate `z`, we split it into `n_domains` domain patches.
|
| 99 |
+
domains = img_to_patches(z, patch_h=self.dh * superres_factor, patch_w=self.dw * superres_factor)
|
| 100 |
+
|
| 101 |
+
# Pool domains (pre augmentation) for compatibility with range patches.
|
| 102 |
+
pooled_domains = self.pool(domains)
|
| 103 |
+
|
| 104 |
+
# If needed, produce additional candidate domain patches as augmentations of existing domains.
|
| 105 |
+
if self.n_aug_transforms > 1:
|
| 106 |
+
pooled_domains = self.generate_candidates(pooled_domains)
|
| 107 |
+
|
| 108 |
+
pooled_domains = repeat(pooled_domains, 'b c d h w -> b c d r h w', r=self.n_ranges)
|
| 109 |
+
|
| 110 |
+
# Apply the affine maps to domain patches
|
| 111 |
+
range_domains = torch.einsum('bcdrhw, bcdr -> bcrhw', pooled_domains, weight)
|
| 112 |
+
range_domains = range_domains + bias[:, :, :, None, None]
|
| 113 |
+
|
| 114 |
+
# Reconstruct data by "composing" the output patches back together (collage!).
|
| 115 |
+
z = patches_to_img(range_domains, self.n_rh, self.n_rw)
|
| 116 |
+
if return_patches: return z, (domains, pooled_domains, range_domains)
|
| 117 |
+
return z
|
| 118 |
+
|
| 119 |
+
def generate_candidates(self, domains):
|
| 120 |
+
domains = domains.permute(0,2,1,3,4)
|
| 121 |
+
rotations = [vmapped_rotate(domains, angle=angle) for angle in (90, 180, 270)]
|
| 122 |
+
hflips = ttf.hflip(domains)
|
| 123 |
+
vflips = ttf.vflip(domains)
|
| 124 |
+
br_shift = ttf.adjust_brightness(domains, 0.5)
|
| 125 |
+
cr_shift = ttf.adjust_contrast(domains, 0.5)
|
| 126 |
+
hue_shift = ttf.adjust_hue(domains, 0.5)
|
| 127 |
+
sat_shift = ttf.adjust_saturation(domains, 0.5)
|
| 128 |
+
domains = torch.cat([domains, *rotations, hflips, vflips, br_shift, cr_shift, hue_shift, sat_shift], dim=1)
|
| 129 |
+
return domains.permute(0,2,1,3,4)
|
| 130 |
+
|
| 131 |
+
def forward(self, x, co_w, co_bias, decode_steps=20, superres_factor=1):
|
| 132 |
+
B, C, H, W = x.shape
|
| 133 |
+
# It does not matter which initial condition is chosen, so long as the dimensions match.
|
| 134 |
+
# The fixed-point of a Collage Operator is uniquely determined* by the fractal code
|
| 135 |
+
# *: and auxiliary learned patches, if any.
|
| 136 |
+
z = torch.randn(B, C, H * superres_factor, W * superres_factor).to(x.device)
|
| 137 |
+
for _ in range(decode_steps):
|
| 138 |
+
z = self.decode_step(z, co_w, co_bias, superres_factor)
|
| 139 |
+
return z
|
| 140 |
+
|
| 141 |
+
def collage_partition_info(self, input_res, dh, dw, rh, rw):
|
| 142 |
+
"""
|
| 143 |
+
Computes auxiliary information for the collage (number of source and target domains, and relative size factors)
|
| 144 |
+
"""
|
| 145 |
+
height = width = input_res
|
| 146 |
+
n_dh, n_dw = height // dh, width // dw
|
| 147 |
+
n_domains = n_dh * n_dw
|
| 148 |
+
|
| 149 |
+
# Adjust number of domain patches to include augmentations
|
| 150 |
+
n_domains = n_domains + n_domains * self.n_aug_transforms # (3 rotations, hflip, vlip)
|
| 151 |
+
|
| 152 |
+
h_factors, w_factors = dh // rh, dw // rw
|
| 153 |
+
n_rh, n_rw = input_res // rh, input_res // rw
|
| 154 |
+
n_ranges = n_rh * n_rw
|
| 155 |
+
return n_dh, n_dw, n_rh, n_rw, h_factors, w_factors, n_domains, n_ranges
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
class NeuralCollageOperator2d(nn.Module):
|
| 159 |
+
def __init__(self, out_res, out_channels, rh, rw, dh=None, dw=None, net=None, use_augmentations=False):
|
| 160 |
+
super().__init__()
|
| 161 |
+
self.co = CollageOperator2d(out_res, rh, rw, dh, dw, use_augmentations)
|
| 162 |
+
# In a Collage Operator, the affine map requires a single scalar weight
|
| 163 |
+
# for each pair of domain and range patches, and a single scalar bias for each range.
|
| 164 |
+
# `net` learns to output these weights based on the objective.
|
| 165 |
+
self.co_w_dim = self.co.n_domains * self.co.n_ranges * out_channels
|
| 166 |
+
self.co_bias_dim = self.co.n_ranges * out_channels
|
| 167 |
+
tot_out_dim = self.co_w_dim + self.co_bias_dim
|
| 168 |
+
|
| 169 |
+
# Does not need to be a ConvMixer: for deep generative Neural Collages `net` can be e.g, a VDVAE.
|
| 170 |
+
if net is None:
|
| 171 |
+
net = ConvMixer(dim=32, depth=8, kernel_size=9, patch_size=7, num_classes=tot_out_dim)
|
| 172 |
+
self.net = net
|
| 173 |
+
|
| 174 |
+
self.softmax = nn.Softmax(dim=-1)
|
| 175 |
+
self.tanh = nn.Tanh()
|
| 176 |
+
|
| 177 |
+
def forward(self, x, decode_steps=10, superres_factor=1, return_co_code=False):
|
| 178 |
+
B, C, H, W = x.shape
|
| 179 |
+
co_code = self.net(x) # B, C, co_w_dim + co_mix_dim + co_bias_dim
|
| 180 |
+
co_w, co_bias = torch.split(co_code, [self.co_w_dim, self.co_bias_dim], dim=-1)
|
| 181 |
+
|
| 182 |
+
co_w = co_w.view(B, C, self.co.n_domains, self.co.n_ranges)
|
| 183 |
+
# No restrictions on co_w, thus no guarantee of contractiveness.
|
| 184 |
+
# In the full jax version of Neural Collages we enforce the constraint |co_w| < 1 (elementwise).
|
| 185 |
+
co_bias = co_bias.view(B, C, self.co.n_ranges)
|
| 186 |
+
co_bias = self.tanh(co_bias)
|
| 187 |
+
|
| 188 |
+
z = self.co(x, co_w, co_bias, decode_steps=decode_steps, superres_factor=superres_factor)
|
| 189 |
+
|
| 190 |
+
if return_co_code: return z, co_w, co_bias
|
| 191 |
+
else: return z
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
def fractalize(img, superresolution_factor=1):
|
| 196 |
+
superresolution_factor = int(superresolution_factor)
|
| 197 |
+
|
| 198 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
| 199 |
+
|
| 200 |
+
im = np.asarray(img)
|
| 201 |
+
|
| 202 |
+
im = torch.from_numpy(im).permute(2,0,1).to(device)
|
| 203 |
+
co = NeuralCollageOperator2d(out_res=100, out_channels=3, rh=2, rw=2, dh=100, dw=100).to(device)
|
| 204 |
+
|
| 205 |
+
opt = torch.optim.Adam(co.parameters(), lr=1e-2)
|
| 206 |
+
objective = nn.MSELoss()
|
| 207 |
+
norm_im = im.float().unsqueeze(0) / 255
|
| 208 |
+
|
| 209 |
+
for _ in range(200):
|
| 210 |
+
recon = co(norm_im, decode_steps=10, return_co_code=False)
|
| 211 |
+
|
| 212 |
+
loss = objective(recon, norm_im)
|
| 213 |
+
loss.backward()
|
| 214 |
+
opt.step()
|
| 215 |
+
opt.zero_grad()
|
| 216 |
+
|
| 217 |
+
fractal_img = co(norm_im, decode_steps=10, superres_factor=superresolution_factor)[0].permute(1,2,0).clamp(-1, 1)
|
| 218 |
+
return fractal_img.cpu().detach().numpy()
|
| 219 |
+
|
| 220 |
+
demo = gr.Interface(
|
| 221 |
+
fn=fractalize,
|
| 222 |
+
inputs=[gr.Image(shape=(100, 100), image_mode='RGB'), gr.Slider(1, 40, step=1)],
|
| 223 |
+
outputs="image"
|
| 224 |
+
)
|
| 225 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
torch
|
| 3 |
+
einops
|
| 4 |
+
timm
|
| 5 |
+
torchvision
|
| 6 |
+
functorch
|
| 7 |
+
torch
|