""" 2025.3.15 2025.3.17 4.50.0.dev0 0.15.2 __UNSLOTH_VERSIONING__ """ from torch import Tensor import torch import torch.nn as nn from torch.nn import functional as F from trl.trainer.ddpo_trainer import (Accelerator, Any, Callable, DDPOConfig, DDPOStableDiffusionPipeline, DDPOTrainer, Optional, PerPromptStatTracker, ProjectConfiguration, PyTorchModelHubMixin, Union, defaultdict, futures, generate_model_card, get_comet_experiment_url, is_wandb_available, logger, os, set_seed, textwrap, torch, warn) import os from typing import * from dataclasses import dataclass, field from packaging.version import Version import torch import numpy as np from contextlib import nullcontext from torch.nn import functional as F from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling torch_compile_options = { "epilogue_fusion" : True, "max_autotune" : False, "shape_padding" : True, "trace.enabled" : False, "triton.cudagraphs" : False, } @torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,) def selective_log_softmax(logits, index): logits = logits.to(torch.float32) selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1) # loop to reduce peak mem consumption # logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits]) logsumexp_values = torch.logsumexp(logits, dim = -1) per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x) return per_token_logps @dataclass class UnslothDDPOConfig(DDPOConfig): """ Configuration class for the [`DDPOTrainer`]. Using [`~transformers.HfArgumentParser`] we can turn this class into [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the command line. Parameters: exp_name (`str`, *optional*, defaults to `os.path.basename(sys.argv[0])[: -len(".py")]`): Name of this experiment (by default is the file name without the extension name). run_name (`str`, *optional*, defaults to `""`): Name of this run. seed (`int`, *optional*, defaults to `0`): Random seed. log_with (`Literal["wandb", "tensorboard"]]` or `None`, *optional*, defaults to `None`): Log with either 'wandb' or 'tensorboard', check https://huggingface.co/docs/accelerate/usage_guides/tracking for more details. tracker_kwargs (`Dict`, *optional*, defaults to `{}`): Keyword arguments for the tracker (e.g. wandb_project). accelerator_kwargs (`Dict`, *optional*, defaults to `{}`): Keyword arguments for the accelerator. project_kwargs (`Dict`, *optional*, defaults to `{}`): Keyword arguments for the accelerator project config (e.g. `logging_dir`). tracker_project_name (`str`, *optional*, defaults to `"trl"`): Name of project to use for tracking. logdir (`str`, *optional*, defaults to `"logs"`): Top-level logging directory for checkpoint saving. num_epochs (`int`, *optional*, defaults to `100`): Number of epochs to train. save_freq (`int`, *optional*, defaults to `1`): Number of epochs between saving model checkpoints. num_checkpoint_limit (`int`, *optional*, defaults to `5`): Number of checkpoints to keep before overwriting old ones. mixed_precision (`str`, *optional*, defaults to `"fp16"`): Mixed precision training. allow_tf32 (`bool`, *optional*, defaults to `True`): Allow `tf32` on Ampere GPUs. resume_from (`str`, *optional*, defaults to `""`): Resume training from a checkpoint. sample_num_steps (`int`, *optional*, defaults to `50`): Number of sampler inference steps. sample_eta (`float`, *optional*, defaults to `1.0`): Eta parameter for the DDIM sampler. sample_guidance_scale (`float`, *optional*, defaults to `5.0`): Classifier-free guidance weight. sample_batch_size (`int`, *optional*, defaults to `1`): Batch size (per GPU) to use for sampling. sample_num_batches_per_epoch (`int`, *optional*, defaults to `2`): Number of batches to sample per epoch. train_batch_size (`int`, *optional*, defaults to `1`): Batch size (per GPU) to use for training. train_use_8bit_adam (`bool`, *optional*, defaults to `False`): Use 8bit Adam optimizer from bitsandbytes. train_learning_rate (`float`, *optional*, defaults to `3e-4`): Learning rate. train_adam_beta1 (`float`, *optional*, defaults to `0.9`): Adam beta1. train_adam_beta2 (`float`, *optional*, defaults to `0.999`): Adam beta2. train_adam_weight_decay (`float`, *optional*, defaults to `1e-4`): Adam weight decay. train_adam_epsilon (`float`, *optional*, defaults to `1e-8`): Adam epsilon. train_gradient_accumulation_steps (`int`, *optional*, defaults to `1`): Number of gradient accumulation steps. train_max_grad_norm (`float`, *optional*, defaults to `1.0`): Maximum gradient norm for gradient clipping. train_num_inner_epochs (`int`, *optional*, defaults to `1`): Number of inner epochs per outer epoch. train_cfg (`bool`, *optional*, defaults to `True`): Whether to use classifier-free guidance during training. train_adv_clip_max (`float`, *optional*, defaults to `5.0`): Clip advantages to the range. train_clip_range (`float`, *optional*, defaults to `1e-4`): PPO clip range. train_timestep_fraction (`float`, *optional*, defaults to `1.0`): Fraction of timesteps to train on. per_prompt_stat_tracking (`bool`, *optional*, defaults to `False`): Whether to track statistics for each prompt separately. per_prompt_stat_tracking_buffer_size (`int`, *optional*, defaults to `16`): Number of reward values to store in the buffer for each prompt. per_prompt_stat_tracking_min_count (`int`, *optional*, defaults to `16`): Minimum number of reward values to store in the buffer. async_reward_computation (`bool`, *optional*, defaults to `False`): Whether to compute rewards asynchronously. max_workers (`int`, *optional*, defaults to `2`): Maximum number of workers to use for async reward computation. negative_prompts (`str`, *optional*, defaults to `""`): Comma-separated list of prompts to use as negative examples. push_to_hub (`bool`, *optional*, defaults to `False`): Whether to push the final model checkpoint to the Hub. """ vllm_sampling_params: Optional[Any] = field( default = None, metadata = {'help': 'vLLM SamplingParams'}, ) unsloth_num_chunks : Optional[int] = field( default = -1, metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, ) def __init__( self, exp_name = 'demo', run_name = '', seed = 3407, log_with = None, tracker_project_name = 'trl', logdir = 'logs', num_epochs = 100, save_freq = 1, num_checkpoint_limit = 5, mixed_precision = 'fp16', allow_tf32 = True, resume_from = '', sample_num_steps = 50, sample_eta = 1.0, sample_guidance_scale = 5.0, sample_batch_size = 1, sample_num_batches_per_epoch = 2, train_batch_size = 1, train_use_8bit_adam = False, train_learning_rate = 5e-05, train_adam_beta1 = 0.9, train_adam_beta2 = 0.999, train_adam_weight_decay = 0.01, train_adam_epsilon = 1e-08, train_gradient_accumulation_steps = 2, train_max_grad_norm = 1.0, train_num_inner_epochs = 1, train_cfg = True, train_adv_clip_max = 5.0, train_clip_range = 0.0001, train_timestep_fraction = 1.0, per_prompt_stat_tracking = False, per_prompt_stat_tracking_buffer_size = 16, per_prompt_stat_tracking_min_count = 16, async_reward_computation = False, max_workers = 2, negative_prompts = '', push_to_hub = False, vllm_sampling_params = None, unsloth_num_chunks = -1, **kwargs, ): super().__init__( exp_name = exp_name, run_name = run_name, seed = seed, log_with = log_with, tracker_project_name = tracker_project_name, logdir = logdir, num_epochs = num_epochs, save_freq = save_freq, num_checkpoint_limit = num_checkpoint_limit, mixed_precision = mixed_precision, allow_tf32 = allow_tf32, resume_from = resume_from, sample_num_steps = sample_num_steps, sample_eta = sample_eta, sample_guidance_scale = sample_guidance_scale, sample_batch_size = sample_batch_size, sample_num_batches_per_epoch = sample_num_batches_per_epoch, train_batch_size = train_batch_size, train_use_8bit_adam = train_use_8bit_adam, train_learning_rate = train_learning_rate, train_adam_beta1 = train_adam_beta1, train_adam_beta2 = train_adam_beta2, train_adam_weight_decay = train_adam_weight_decay, train_adam_epsilon = train_adam_epsilon, train_gradient_accumulation_steps = train_gradient_accumulation_steps, train_max_grad_norm = train_max_grad_norm, train_num_inner_epochs = train_num_inner_epochs, train_cfg = train_cfg, train_adv_clip_max = train_adv_clip_max, train_clip_range = train_clip_range, train_timestep_fraction = train_timestep_fraction, per_prompt_stat_tracking = per_prompt_stat_tracking, per_prompt_stat_tracking_buffer_size = per_prompt_stat_tracking_buffer_size, per_prompt_stat_tracking_min_count = per_prompt_stat_tracking_min_count, async_reward_computation = async_reward_computation, max_workers = max_workers, negative_prompts = negative_prompts, push_to_hub = push_to_hub,**kwargs) self.vllm_sampling_params = vllm_sampling_params self.unsloth_num_chunks = unsloth_num_chunks pass class _UnslothDDPOTrainer(PyTorchModelHubMixin): """""" _tag_names = ["trl", "ddpo"] def __init__( self, config: DDPOConfig, reward_function: Callable[[torch.Tensor, tuple[str], tuple[Any]], torch.Tensor], prompt_function: Callable[[], tuple[str, Any]], sd_pipeline: DDPOStableDiffusionPipeline, image_samples_hook: Optional[Callable[[Any, Any, Any], Any]] = None, ): if image_samples_hook is None: warn("No image_samples_hook provided; no images will be logged") self.prompt_fn = prompt_function self.reward_fn = reward_function self.config = config self.image_samples_callback = image_samples_hook accelerator_project_config = ProjectConfiguration(**self.config.project_kwargs) if self.config.resume_from: self.config.resume_from = os.path.normpath(os.path.expanduser(self.config.resume_from)) if "checkpoint_" not in os.path.basename(self.config.resume_from): # get the most recent checkpoint in this directory checkpoints = list( filter( lambda x: "checkpoint_" in x, os.listdir(self.config.resume_from), ) ) if len(checkpoints) == 0: raise ValueError(f"No checkpoints found in {self.config.resume_from}") checkpoint_numbers = sorted([int(x.split("_")[-1]) for x in checkpoints]) self.config.resume_from = os.path.join( self.config.resume_from, f"checkpoint_{checkpoint_numbers[-1]}", ) accelerator_project_config.iteration = checkpoint_numbers[-1] + 1 # number of timesteps within each trajectory to train on self.num_train_timesteps = int(self.config.sample_num_steps * self.config.train_timestep_fraction) self.accelerator = Accelerator( log_with=self.config.log_with, mixed_precision=self.config.mixed_precision, project_config=accelerator_project_config, # we always accumulate gradients across timesteps; we want config.train.gradient_accumulation_steps to be the # number of *samples* we accumulate across, so we need to multiply by the number of training timesteps to get # the total number of optimizer steps to accumulate across. gradient_accumulation_steps=self.config.train_gradient_accumulation_steps * self.num_train_timesteps, **self.config.accelerator_kwargs, ) is_okay, message = self._config_check() if not is_okay: raise ValueError(message) is_using_tensorboard = config.log_with is not None and config.log_with == "tensorboard" if self.accelerator.is_main_process: self.accelerator.init_trackers( self.config.tracker_project_name, config=dict(ddpo_trainer_config=config.to_dict()) if not is_using_tensorboard else config.to_dict(), init_kwargs=self.config.tracker_kwargs, ) logger.info(f"\n{config}") set_seed(self.config.seed, device_specific=True) self.sd_pipeline = sd_pipeline self.sd_pipeline.set_progress_bar_config( position=1, disable=not self.accelerator.is_local_main_process, leave=False, desc="Timestep", dynamic_ncols=True, ) # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision # as these weights are only used for inference, keeping weights in full precision is not required. if self.accelerator.mixed_precision == "fp16": inference_dtype = torch.float16 elif self.accelerator.mixed_precision == "bf16": inference_dtype = torch.bfloat16 else: inference_dtype = torch.float32 self.sd_pipeline.vae.to(self.accelerator.device, dtype=inference_dtype) self.sd_pipeline.text_encoder.to(self.accelerator.device, dtype=inference_dtype) self.sd_pipeline.unet.to(self.accelerator.device, dtype=inference_dtype) trainable_layers = self.sd_pipeline.get_trainable_layers() self.accelerator.register_save_state_pre_hook(self._save_model_hook) self.accelerator.register_load_state_pre_hook(self._load_model_hook) # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if self.config.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True self.optimizer = self._setup_optimizer( trainable_layers.parameters() if not isinstance(trainable_layers, list) else trainable_layers ) self.neg_prompt_embed = self.sd_pipeline.text_encoder( self.sd_pipeline.tokenizer( [""] if self.config.negative_prompts is None else self.config.negative_prompts, return_tensors="pt", padding="max_length", truncation=True, max_length=self.sd_pipeline.tokenizer.model_max_length, ).input_ids.to(self.accelerator.device) )[0] if config.per_prompt_stat_tracking: self.stat_tracker = PerPromptStatTracker( config.per_prompt_stat_tracking_buffer_size, config.per_prompt_stat_tracking_min_count, ) # NOTE: for some reason, autocast is necessary for non-lora training but for lora training it isn't necessary and it uses # more memory self.autocast = self.sd_pipeline.autocast or self.accelerator.autocast if hasattr(self.sd_pipeline, "use_lora") and self.sd_pipeline.use_lora: unet, self.optimizer = self.accelerator.prepare(trainable_layers, self.optimizer) self.trainable_layers = list(filter(lambda p: p.requires_grad, unet.parameters())) else: self.trainable_layers, self.optimizer = self.accelerator.prepare(trainable_layers, self.optimizer) if self.config.async_reward_computation: self.executor = futures.ThreadPoolExecutor(max_workers=config.max_workers) if config.resume_from: logger.info(f"Resuming from {config.resume_from}") self.accelerator.load_state(config.resume_from) self.first_epoch = int(config.resume_from.split("_")[-1]) + 1 else: self.first_epoch = 0 def compute_rewards(self, prompt_image_pairs, is_async=False): if not is_async: rewards = [] for images, prompts, prompt_metadata in prompt_image_pairs: reward, reward_metadata = self.reward_fn(images, prompts, prompt_metadata) rewards.append( ( torch.as_tensor(reward, device=self.accelerator.device), reward_metadata, ) ) else: rewards = self.executor.map(lambda x: self.reward_fn(*x), prompt_image_pairs) rewards = [ (torch.as_tensor(reward.result(), device=self.accelerator.device), reward_metadata.result()) for reward, reward_metadata in rewards ] return zip(*rewards) def step(self, epoch: int, global_step: int): """ Perform a single step of training. Args: epoch (int): The current epoch. global_step (int): The current global step. Side Effects: - Model weights are updated - Logs the statistics to the accelerator trackers. - If `self.image_samples_callback` is not None, it will be called with the prompt_image_pairs, global_step, and the accelerator tracker. Returns: global_step (int): The updated global step. """ samples, prompt_image_data = self._generate_samples( iterations=self.config.sample_num_batches_per_epoch, batch_size=self.config.sample_batch_size, ) # collate samples into dict where each entry has shape (num_batches_per_epoch * sample.batch_size, ...) samples = {k: torch.cat([s[k] for s in samples]) for k in samples[0].keys()} rewards, rewards_metadata = self.compute_rewards( prompt_image_data, is_async=self.config.async_reward_computation ) for i, image_data in enumerate(prompt_image_data): image_data.extend([rewards[i], rewards_metadata[i]]) if self.image_samples_callback is not None: self.image_samples_callback(prompt_image_data, global_step, self.accelerator.trackers[0]) rewards = torch.cat(rewards) rewards = self.accelerator.gather(rewards).cpu().numpy() self.accelerator.log( { "reward": rewards, "epoch": epoch, "reward_mean": rewards.mean(), "reward_std": rewards.std(), }, step=global_step, ) if self.config.per_prompt_stat_tracking: # gather the prompts across processes prompt_ids = self.accelerator.gather(samples["prompt_ids"]).cpu().numpy() prompts = self.sd_pipeline.tokenizer.batch_decode(prompt_ids, skip_special_tokens=True) advantages = self.stat_tracker.update(prompts, rewards) else: advantages = (rewards - rewards.mean()) / (rewards.std() + 1e-8) # ungather advantages; keep the entries corresponding to the samples on this process samples["advantages"] = ( torch.as_tensor(advantages) .reshape(self.accelerator.num_processes, -1)[self.accelerator.process_index] .to(self.accelerator.device) ) del samples["prompt_ids"] total_batch_size, num_timesteps = samples["timesteps"].shape for inner_epoch in range(self.config.train_num_inner_epochs): # shuffle samples along batch dimension perm = torch.randperm(total_batch_size, device=self.accelerator.device) samples = {k: v[perm] for k, v in samples.items()} # shuffle along time dimension independently for each sample # still trying to understand the code below perms = torch.stack( [torch.randperm(num_timesteps, device=self.accelerator.device) for _ in range(total_batch_size)] ) for key in ["timesteps", "latents", "next_latents", "log_probs"]: samples[key] = samples[key][ torch.arange(total_batch_size, device=self.accelerator.device)[:, None], perms, ] original_keys = samples.keys() original_values = samples.values() # rebatch them as user defined train_batch_size is different from sample_batch_size reshaped_values = [v.reshape(-1, self.config.train_batch_size, *v.shape[1:]) for v in original_values] # Transpose the list of original values transposed_values = zip(*reshaped_values) # Create new dictionaries for each row of transposed values samples_batched = [dict(zip(original_keys, row_values)) for row_values in transposed_values] self.sd_pipeline.unet.train() global_step = self._train_batched_samples(inner_epoch, epoch, global_step, samples_batched) # ensure optimization step at the end of the inner epoch if not self.accelerator.sync_gradients: raise ValueError( "Optimization step should have been performed by this point. Please check calculated gradient accumulation settings." ) if epoch != 0 and epoch % self.config.save_freq == 0 and self.accelerator.is_main_process: self.accelerator.save_state() return global_step def calculate_loss(self, latents, timesteps, next_latents, log_probs, advantages, embeds): """ Calculate the loss for a batch of an unpacked sample Args: latents (torch.Tensor): The latents sampled from the diffusion model, shape: [batch_size, num_channels_latents, height, width] timesteps (torch.Tensor): The timesteps sampled from the diffusion model, shape: [batch_size] next_latents (torch.Tensor): The next latents sampled from the diffusion model, shape: [batch_size, num_channels_latents, height, width] log_probs (torch.Tensor): The log probabilities of the latents, shape: [batch_size] advantages (torch.Tensor): The advantages of the latents, shape: [batch_size] embeds (torch.Tensor): The embeddings of the prompts, shape: [2*batch_size or batch_size, ...] Note: the "or" is because if train_cfg is True, the expectation is that negative prompts are concatenated to the embeds Returns: loss (torch.Tensor), approx_kl (torch.Tensor), clipfrac (torch.Tensor) (all of these are of shape (1,)) """ with self.autocast(): if self.config.train_cfg: noise_pred = self.sd_pipeline.unet( torch.cat([latents] * 2), torch.cat([timesteps] * 2), embeds, ).sample noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.config.sample_guidance_scale * ( noise_pred_text - noise_pred_uncond ) else: noise_pred = self.sd_pipeline.unet( latents, timesteps, embeds, ).sample # compute the log prob of next_latents given latents under the current model scheduler_step_output = self.sd_pipeline.scheduler_step( noise_pred, timesteps, latents, eta=self.config.sample_eta, prev_sample=next_latents, ) log_prob = scheduler_step_output.log_probs advantages = torch.clamp( advantages, -self.config.train_adv_clip_max, self.config.train_adv_clip_max, ) ratio = torch.exp(log_prob - log_probs) loss = self.loss(advantages, self.config.train_clip_range, ratio) approx_kl = 0.5 * torch.mean((log_prob - log_probs) ** 2) clipfrac = torch.mean((torch.abs(ratio - 1.0) > self.config.train_clip_range).float()) return loss, approx_kl, clipfrac def loss( self, advantages: torch.Tensor, clip_range: float, ratio: torch.Tensor, ): unclipped_loss = -advantages * ratio clipped_loss = -advantages * torch.clamp( ratio, 1.0 - clip_range, 1.0 + clip_range, ) return torch.mean(torch.maximum(unclipped_loss, clipped_loss)) def _setup_optimizer(self, trainable_layers_parameters): if self.config.train_use_8bit_adam: import bitsandbytes optimizer_cls = bitsandbytes.optim.AdamW8bit else: optimizer_cls = torch.optim.AdamW return optimizer_cls( trainable_layers_parameters, lr=self.config.train_learning_rate, betas=(self.config.train_adam_beta1, self.config.train_adam_beta2), weight_decay=self.config.train_adam_weight_decay, eps=self.config.train_adam_epsilon, ) def _save_model_hook(self, models, weights, output_dir): self.sd_pipeline.save_checkpoint(models, weights, output_dir) weights.pop() # ensures that accelerate doesn't try to handle saving of the model def _load_model_hook(self, models, input_dir): self.sd_pipeline.load_checkpoint(models, input_dir) models.pop() # ensures that accelerate doesn't try to handle loading of the model def _generate_samples(self, iterations, batch_size): """ Generate samples from the model Args: iterations (int): Number of iterations to generate samples for batch_size (int): Batch size to use for sampling Returns: samples (list[dict[str, torch.Tensor]]), prompt_image_pairs (list[list[Any]]) """ samples = [] prompt_image_pairs = [] self.sd_pipeline.unet.eval() sample_neg_prompt_embeds = self.neg_prompt_embed.repeat(batch_size, 1, 1) for _ in range(iterations): prompts, prompt_metadata = zip(*[self.prompt_fn() for _ in range(batch_size)]) prompt_ids = self.sd_pipeline.tokenizer( prompts, return_tensors="pt", padding="max_length", truncation=True, max_length=self.sd_pipeline.tokenizer.model_max_length, ).input_ids.to(self.accelerator.device) prompt_embeds = self.sd_pipeline.text_encoder(prompt_ids)[0] with self.autocast(): sd_output = self.sd_pipeline( prompt_embeds=prompt_embeds, negative_prompt_embeds=sample_neg_prompt_embeds, num_inference_steps=self.config.sample_num_steps, guidance_scale=self.config.sample_guidance_scale, eta=self.config.sample_eta, output_type="pt", ) images = sd_output.images latents = sd_output.latents log_probs = sd_output.log_probs latents = torch.stack(latents, dim=1) # (batch_size, num_steps + 1, ...) log_probs = torch.stack(log_probs, dim=1) # (batch_size, num_steps, 1) timesteps = self.sd_pipeline.scheduler.timesteps.repeat(batch_size, 1) # (batch_size, num_steps) samples.append( { "prompt_ids": prompt_ids, "prompt_embeds": prompt_embeds, "timesteps": timesteps, "latents": latents[:, :-1], # each entry is the latent before timestep t "next_latents": latents[:, 1:], # each entry is the latent after timestep t "log_probs": log_probs, "negative_prompt_embeds": sample_neg_prompt_embeds, } ) prompt_image_pairs.append([images, prompts, prompt_metadata]) return samples, prompt_image_pairs def _train_batched_samples(self, inner_epoch, epoch, global_step, batched_samples): """ Train on a batch of samples. Main training segment Args: inner_epoch (int): The current inner epoch epoch (int): The current epoch global_step (int): The current global step batched_samples (list[dict[str, torch.Tensor]]): The batched samples to train on Side Effects: - Model weights are updated - Logs the statistics to the accelerator trackers. Returns: global_step (int): The updated global step """ info = defaultdict(list) for _i, sample in enumerate(batched_samples): if self.config.train_cfg: # concat negative prompts to sample prompts to avoid two forward passes embeds = torch.cat([sample["negative_prompt_embeds"], sample["prompt_embeds"]]) else: embeds = sample["prompt_embeds"] for j in range(self.num_train_timesteps): with self.accelerator.accumulate(self.sd_pipeline.unet): loss, approx_kl, clipfrac = self.calculate_loss( sample["latents"][:, j], sample["timesteps"][:, j], sample["next_latents"][:, j], sample["log_probs"][:, j], sample["advantages"], embeds, ) info["approx_kl"].append(approx_kl) info["clipfrac"].append(clipfrac) info["loss"].append(loss) self.accelerator.backward(loss) if self.accelerator.sync_gradients: self.accelerator.clip_grad_norm_( self.trainable_layers.parameters() if not isinstance(self.trainable_layers, list) else self.trainable_layers, self.config.train_max_grad_norm, ) self.optimizer.step() self.optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if self.accelerator.sync_gradients: # log training-related stuff info = {k: torch.mean(torch.stack(v)) for k, v in info.items()} info = self.accelerator.reduce(info, reduction="mean") info.update({"epoch": epoch, "inner_epoch": inner_epoch}) self.accelerator.log(info, step=global_step) global_step += 1 info = defaultdict(list) return global_step def _config_check(self) -> tuple[bool, str]: samples_per_epoch = ( self.config.sample_batch_size * self.accelerator.num_processes * self.config.sample_num_batches_per_epoch ) total_train_batch_size = ( self.config.train_batch_size * self.accelerator.num_processes * self.config.train_gradient_accumulation_steps ) if not self.config.sample_batch_size >= self.config.train_batch_size: return ( False, f"Sample batch size ({self.config.sample_batch_size}) must be greater than or equal to the train batch size ({self.config.train_batch_size})", ) if not self.config.sample_batch_size % self.config.train_batch_size == 0: return ( False, f"Sample batch size ({self.config.sample_batch_size}) must be divisible by the train batch size ({self.config.train_batch_size})", ) if not samples_per_epoch % total_train_batch_size == 0: return ( False, f"Number of samples per epoch ({samples_per_epoch}) must be divisible by the total train batch size ({total_train_batch_size})", ) return True, "" def train(self, epochs: Optional[int] = None): """ Train the model for a given number of epochs """ global_step = 0 if epochs is None: epochs = self.config.num_epochs for epoch in range(self.first_epoch, epochs): global_step = self.step(epoch, global_step) def _save_pretrained(self, save_directory): self.sd_pipeline.save_pretrained(save_directory) self.create_model_card() def create_model_card( self, model_name: Optional[str] = None, dataset_name: Optional[str] = None, tags: Union[str, list[str], None] = None, ): """ Creates a draft of a model card using the information available to the `Trainer`. Args: model_name (`str` or `None`, *optional*, defaults to `None`): Name of the model. dataset_name (`str` or `None`, *optional*, defaults to `None`): Name of the dataset used for training. tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): Tags to be associated with the model card. """ if not self.is_world_process_zero(): return if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): base_model = self.model.config._name_or_path else: base_model = None tags = tags or [] if isinstance(tags, str): tags = [tags] if hasattr(self.model.config, "unsloth_version"): tags.append("unsloth") citation = textwrap.dedent("""\ @inproceedings{black2024training, title = {{Training Diffusion Models with Reinforcement Learning}}, author = {Kevin Black and Michael Janner and Yilun Du and Ilya Kostrikov and Sergey Levine}, year = 2024, booktitle = {The Twelfth International Conference on Learning Representations, {ICLR} 2024, Vienna, Austria, May 7-11, 2024}, publisher = {OpenReview.net}, url = {https://openreview.net/forum?id=YCWjhGrJFD}, }""") model_card = generate_model_card( base_model=base_model, model_name=model_name, hub_model_id=self.hub_model_id, dataset_name=dataset_name, tags=tags, wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, comet_url=get_comet_experiment_url(), trainer_name="DDPO", trainer_citation=citation, paper_title="Training Diffusion Models with Reinforcement Learning", paper_id="2305.13301", ) model_card.save(os.path.join(self.args.output_dir, "README.md")) class UnslothDDPOTrainer(_UnslothDDPOTrainer): """ The DDPOTrainer uses Deep Diffusion Policy Optimization to optimise diffusion models. Note, this trainer is heavily inspired by the work here: https://github.com/kvablack/ddpo-pytorch As of now only Stable Diffusion based pipelines are supported Attributes: **config** (`DDPOConfig`) -- Configuration object for DDPOTrainer. Check the documentation of `PPOConfig` for more details. **reward_function** (Callable[[torch.Tensor, tuple[str], tuple[Any]], torch.Tensor]) -- Reward function to be used **prompt_function** (Callable[[], tuple[str, Any]]) -- Function to generate prompts to guide model **sd_pipeline** (`DDPOStableDiffusionPipeline`) -- Stable Diffusion pipeline to be used for training. **image_samples_hook** (Optional[Callable[[Any, Any, Any], Any]]) -- Hook to be called to log images """ def __init__( self, config, reward_function, prompt_function, sd_pipeline, image_samples_hook = None, **kwargs ): if args is None: args = UnslothDDPOConfig() other_metrics = [] from unsloth_zoo.logging_utils import PatchRLStatistics PatchRLStatistics('ddpo_trainer', other_metrics) super().__init__( config = config, reward_function = reward_function, prompt_function = prompt_function, sd_pipeline = sd_pipeline, image_samples_hook = image_samples_hook,**kwargs) pass