File size: 1,525 Bytes
5e9cd1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import requests
import json
import sys
from pathlib import Path

root_path = Path(__file__).parent.parent.parent
sys.path.append(str(root_path))
from server.utils import api_address

api_base_url = api_address()

kb = "samples"
file_name = "/media/gpt4-pdf-chatbot-langchain/langchain-ChatGLM/knowledge_base/samples/content/llm/大模型技术栈-实战与应用.md"
doc_ids = [
    "357d580f-fdf7-495c-b58b-595a398284e8",
    "c7338773-2e83-4671-b237-1ad20335b0f0",
    "6da613d1-327d-466f-8c1a-b32e6f461f47"
]


def test_summary_file_to_vector_store(api="/knowledge_base/kb_summary_api/summary_file_to_vector_store"):
    url = api_base_url + api
    print("\n文件摘要:")
    r = requests.post(url, json={"knowledge_base_name": kb,
                                 "file_name": file_name
                                 }, stream=True)
    for chunk in r.iter_content(None):
        data = json.loads(chunk[6:])
        assert isinstance(data, dict)
        assert data["code"] == 200
        print(data["msg"])


def test_summary_doc_ids_to_vector_store(api="/knowledge_base/kb_summary_api/summary_doc_ids_to_vector_store"):
    url = api_base_url + api
    print("\n文件摘要:")
    r = requests.post(url, json={"knowledge_base_name": kb,
                                 "doc_ids": doc_ids
                                 }, stream=True)
    for chunk in r.iter_content(None):
        data = json.loads(chunk[6:])
        assert isinstance(data, dict)
        assert data["code"] == 200
        print(data)