File size: 11,486 Bytes
5e9cd1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
from __future__ import annotations
import json
import re
import warnings
from typing import Dict
from langchain.callbacks.manager import AsyncCallbackManagerForChainRun, CallbackManagerForChainRun
from langchain.chains.llm import LLMChain
from langchain.pydantic_v1 import Extra, root_validator
from langchain.schema import BasePromptTemplate
from langchain.schema.language_model import BaseLanguageModel
from typing import List, Any, Optional
from langchain.prompts import PromptTemplate
from server.chat.knowledge_base_chat import knowledge_base_chat
from configs import VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD, MAX_TOKENS
import asyncio
from server.agent import model_container
from pydantic import BaseModel, Field

async def search_knowledge_base_iter(database: str, query: str) -> str:
    response = await knowledge_base_chat(query=query,
                                         knowledge_base_name=database,
                                         model_name=model_container.MODEL.model_name,
                                         temperature=0.01,
                                         history=[],
                                         top_k=VECTOR_SEARCH_TOP_K,
                                         max_tokens=MAX_TOKENS,
                                         prompt_name="default",
                                         score_threshold=SCORE_THRESHOLD,
                                         stream=False)

    contents = ""
    async for data in response.body_iterator:  # 这里的data是一个json字符串
        data = json.loads(data)
        contents += data["answer"]
        docs = data["docs"]
    return contents


async def search_knowledge_multiple(queries) -> List[str]:
    # queries 应该是一个包含多个 (database, query) 元组的列表
    tasks = [search_knowledge_base_iter(database, query) for database, query in queries]
    results = await asyncio.gather(*tasks)
    # 结合每个查询结果,并在每个查询结果前添加一个自定义的消息
    combined_results = []
    for (database, _), result in zip(queries, results):
        message = f"\n查询到 {database} 知识库的相关信息:\n{result}"
        combined_results.append(message)

    return combined_results


def search_knowledge(queries) -> str:
    responses = asyncio.run(search_knowledge_multiple(queries))
    # 输出每个整合的查询结果
    contents = ""
    for response in responses:
        contents += response + "\n\n"
    return contents


_PROMPT_TEMPLATE = """
用户会提出一个需要你查询知识库的问题,你应该对问题进行理解和拆解,并在知识库中查询相关的内容。

对于每个知识库,你输出的内容应该是一个一行的字符串,这行字符串包含知识库名称和查询内容,中间用逗号隔开,不要有多余的文字和符号。你可以同时查询多个知识库,下面这个例子就是同时查询两个知识库的内容。

例子:

robotic,机器人男女比例是多少
bigdata,大数据的就业情况如何 


这些数据库是你能访问的,冒号之前是他们的名字,冒号之后是他们的功能,你应该参考他们的功能来帮助你思考


{database_names}

你的回答格式应该按照下面的内容,请注意```text 等标记都必须输出,这是我用来提取答案的标记。
不要输出中文的逗号,不要输出引号。

Question: ${{用户的问题}}

```text
${{知识库名称,查询问题,不要带有任何除了,之外的符号,比如不要输出中文的逗号,不要输出引号}}

```output
数据库查询的结果

现在,我们开始作答
问题: {question}
"""

PROMPT = PromptTemplate(
    input_variables=["question", "database_names"],
    template=_PROMPT_TEMPLATE,
)


class LLMKnowledgeChain(LLMChain):
    llm_chain: LLMChain
    llm: Optional[BaseLanguageModel] = None
    """[Deprecated] LLM wrapper to use."""
    prompt: BasePromptTemplate = PROMPT
    """[Deprecated] Prompt to use to translate to python if necessary."""
    database_names: Dict[str, str] = None
    input_key: str = "question"  #: :meta private:
    output_key: str = "answer"  #: :meta private:

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid
        arbitrary_types_allowed = True

    @root_validator(pre=True)
    def raise_deprecation(cls, values: Dict) -> Dict:
        if "llm" in values:
            warnings.warn(
                "Directly instantiating an LLMKnowledgeChain with an llm is deprecated. "
                "Please instantiate with llm_chain argument or using the from_llm "
                "class method."
            )
            if "llm_chain" not in values and values["llm"] is not None:
                prompt = values.get("prompt", PROMPT)
                values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt)
        return values

    @property
    def input_keys(self) -> List[str]:
        """Expect input key.

        :meta private:
        """
        return [self.input_key]

    @property
    def output_keys(self) -> List[str]:
        """Expect output key.

        :meta private:
        """
        return [self.output_key]

    def _evaluate_expression(self, queries) -> str:
        try:
            output = search_knowledge(queries)
        except Exception as e:
            output = "输入的信息有误或不存在知识库,错误信息如下:\n"
            return output + str(e)
        return output

    def _process_llm_result(
            self,
            llm_output: str,
            run_manager: CallbackManagerForChainRun
    ) -> Dict[str, str]:

        run_manager.on_text(llm_output, color="green", verbose=self.verbose)

        llm_output = llm_output.strip()
        # text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL)
        text_match = re.search(r"```text(.*)", llm_output, re.DOTALL)
        if text_match:
            expression = text_match.group(1).strip()
            cleaned_input_str = (expression.replace("\"", "").replace("“", "").
                                 replace("”", "").replace("```", "").strip())
            lines = cleaned_input_str.split("\n")
            # 使用逗号分割每一行,然后形成一个(数据库,查询)元组的列表

            try:
                queries = [(line.split(",")[0].strip(), line.split(",")[1].strip()) for line in lines]
            except:
                queries = [(line.split(",")[0].strip(), line.split(",")[1].strip()) for line in lines]
            run_manager.on_text("知识库查询询内容:\n\n" + str(queries) + " \n\n", color="blue", verbose=self.verbose)
            output = self._evaluate_expression(queries)
            run_manager.on_text("\nAnswer: ", verbose=self.verbose)
            run_manager.on_text(output, color="yellow", verbose=self.verbose)
            answer = "Answer: " + output
        elif llm_output.startswith("Answer:"):
            answer = llm_output
        elif "Answer:" in llm_output:
            answer = llm_output.split("Answer:")[-1]
        else:
            return {self.output_key: f"输入的格式不对:\n {llm_output}"}
        return {self.output_key: answer}

    async def _aprocess_llm_result(
            self,
            llm_output: str,
            run_manager: AsyncCallbackManagerForChainRun,
    ) -> Dict[str, str]:
        await run_manager.on_text(llm_output, color="green", verbose=self.verbose)
        llm_output = llm_output.strip()
        text_match = re.search(r"```text(.*)", llm_output, re.DOTALL)
        if text_match:

            expression = text_match.group(1).strip()
            cleaned_input_str = (
                expression.replace("\"", "").replace("“", "").replace("”", "").replace("```", "").strip())
            lines = cleaned_input_str.split("\n")
            try:
                queries = [(line.split(",")[0].strip(), line.split(",")[1].strip()) for line in lines]
            except:
                queries = [(line.split(",")[0].strip(), line.split(",")[1].strip()) for line in lines]
            await run_manager.on_text("知识库查询询内容:\n\n" + str(queries) + " \n\n", color="blue",
                                      verbose=self.verbose)

            output = self._evaluate_expression(queries)
            await run_manager.on_text("\nAnswer: ", verbose=self.verbose)
            await run_manager.on_text(output, color="yellow", verbose=self.verbose)
            answer = "Answer: " + output
        elif llm_output.startswith("Answer:"):
            answer = llm_output
        elif "Answer:" in llm_output:
            answer = "Answer: " + llm_output.split("Answer:")[-1]
        else:
            raise ValueError(f"unknown format from LLM: {llm_output}")
        return {self.output_key: answer}

    def _call(
            self,
            inputs: Dict[str, str],
            run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Dict[str, str]:
        _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
        _run_manager.on_text(inputs[self.input_key])
        self.database_names = model_container.DATABASE
        data_formatted_str = ',\n'.join([f' "{k}":"{v}"' for k, v in self.database_names.items()])
        llm_output = self.llm_chain.predict(
            database_names=data_formatted_str,
            question=inputs[self.input_key],
            stop=["```output"],
            callbacks=_run_manager.get_child(),
        )
        return self._process_llm_result(llm_output, _run_manager)

    async def _acall(
            self,
            inputs: Dict[str, str],
            run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
    ) -> Dict[str, str]:
        _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
        await _run_manager.on_text(inputs[self.input_key])
        self.database_names = model_container.DATABASE
        data_formatted_str = ',\n'.join([f' "{k}":"{v}"' for k, v in self.database_names.items()])
        llm_output = await self.llm_chain.apredict(
            database_names=data_formatted_str,
            question=inputs[self.input_key],
            stop=["```output"],
            callbacks=_run_manager.get_child(),
        )
        return await self._aprocess_llm_result(llm_output, inputs[self.input_key], _run_manager)

    @property
    def _chain_type(self) -> str:
        return "llm_knowledge_chain"

    @classmethod
    def from_llm(
            cls,
            llm: BaseLanguageModel,
            prompt: BasePromptTemplate = PROMPT,
            **kwargs: Any,
    ) -> LLMKnowledgeChain:
        llm_chain = LLMChain(llm=llm, prompt=prompt)
        return cls(llm_chain=llm_chain, **kwargs)


def search_knowledgebase_complex(query: str):
    model = model_container.MODEL
    llm_knowledge = LLMKnowledgeChain.from_llm(model, verbose=True, prompt=PROMPT)
    ans = llm_knowledge.run(query)
    return ans

class KnowledgeSearchInput(BaseModel):
    location: str = Field(description="The query to be searched")

if __name__ == "__main__":
    result = search_knowledgebase_complex("机器人和大数据在代码教学上有什么区别")
    print(result)

# 这是一个正常的切割
#     queries = [
#         ("bigdata", "大数据专业的男女比例"),
#         ("robotic", "机器人专业的优势")
#     ]
#     result = search_knowledge(queries)
#     print(result)