Spaces:
Running
Running
File size: 15,391 Bytes
5e9cd1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import streamlit as st
from webui_pages.utils import *
from st_aggrid import AgGrid, JsCode
from st_aggrid.grid_options_builder import GridOptionsBuilder
import pandas as pd
from server.knowledge_base.utils import get_file_path, LOADER_DICT
from server.knowledge_base.kb_service.base import get_kb_details, get_kb_file_details
from typing import Literal, Dict, Tuple
from configs import (kbs_config,
EMBEDDING_MODEL, DEFAULT_VS_TYPE,
CHUNK_SIZE, OVERLAP_SIZE, ZH_TITLE_ENHANCE)
from server.utils import list_embed_models, list_online_embed_models
import os
import time
cell_renderer = JsCode("""function(params) {if(params.value==true){return '✓'}else{return '×'}}""")
def config_aggrid(
df: pd.DataFrame,
columns: Dict[Tuple[str, str], Dict] = {},
selection_mode: Literal["single", "multiple", "disabled"] = "single",
use_checkbox: bool = False,
) -> GridOptionsBuilder:
gb = GridOptionsBuilder.from_dataframe(df)
gb.configure_column("No", width=40)
for (col, header), kw in columns.items():
gb.configure_column(col, header, wrapHeaderText=True, **kw)
gb.configure_selection(
selection_mode=selection_mode,
use_checkbox=use_checkbox,
pre_selected_rows=st.session_state.get("selected_rows", [0]),
)
gb.configure_pagination(
enabled=True,
paginationAutoPageSize=False,
paginationPageSize=10
)
return gb
def file_exists(kb: str, selected_rows: List) -> Tuple[str, str]:
"""
check whether a doc file exists in local knowledge base folder.
return the file's name and path if it exists.
"""
if selected_rows:
file_name = selected_rows[0]["file_name"]
file_path = get_file_path(kb, file_name)
if os.path.isfile(file_path):
return file_name, file_path
return "", ""
def knowledge_base_page(api: ApiRequest, is_lite: bool = None):
try:
kb_list = {x["kb_name"]: x for x in get_kb_details()}
except Exception as e:
st.error(
"获取知识库信息错误,请检查是否已按照 `README.md` 中 `4 知识库初始化与迁移` 步骤完成初始化或迁移,或是否为数据库连接错误。")
st.stop()
kb_names = list(kb_list.keys())
if "selected_kb_name" in st.session_state and st.session_state["selected_kb_name"] in kb_names:
selected_kb_index = kb_names.index(st.session_state["selected_kb_name"])
else:
selected_kb_index = 0
if "selected_kb_info" not in st.session_state:
st.session_state["selected_kb_info"] = ""
def format_selected_kb(kb_name: str) -> str:
if kb := kb_list.get(kb_name):
return f"{kb_name} ({kb['vs_type']} @ {kb['embed_model']})"
else:
return kb_name
selected_kb = st.selectbox(
"请选择或新建知识库:",
kb_names + ["新建知识库"],
format_func=format_selected_kb,
index=selected_kb_index
)
if selected_kb == "新建知识库":
with st.form("新建知识库"):
kb_name = st.text_input(
"新建知识库名称",
placeholder="新知识库名称,不支持中文命名",
key="kb_name",
)
kb_info = st.text_input(
"知识库简介",
placeholder="知识库简介,方便Agent查找",
key="kb_info",
)
cols = st.columns(2)
vs_types = list(kbs_config.keys())
vs_type = cols[0].selectbox(
"向量库类型",
vs_types,
index=vs_types.index(DEFAULT_VS_TYPE),
key="vs_type",
)
if is_lite:
embed_models = list_online_embed_models()
else:
embed_models = list_embed_models() + list_online_embed_models()
embed_model = cols[1].selectbox(
"Embedding 模型",
embed_models,
index=embed_models.index(EMBEDDING_MODEL),
key="embed_model",
)
submit_create_kb = st.form_submit_button(
"新建",
# disabled=not bool(kb_name),
use_container_width=True,
)
if submit_create_kb:
if not kb_name or not kb_name.strip():
st.error(f"知识库名称不能为空!")
elif kb_name in kb_list:
st.error(f"名为 {kb_name} 的知识库已经存在!")
else:
ret = api.create_knowledge_base(
knowledge_base_name=kb_name,
vector_store_type=vs_type,
embed_model=embed_model,
)
st.toast(ret.get("msg", " "))
st.session_state["selected_kb_name"] = kb_name
st.session_state["selected_kb_info"] = kb_info
st.rerun()
elif selected_kb:
kb = selected_kb
st.session_state["selected_kb_info"] = kb_list[kb]['kb_info']
# 上传文件
files = st.file_uploader("上传知识文件:",
[i for ls in LOADER_DICT.values() for i in ls],
accept_multiple_files=True,
)
kb_info = st.text_area("请输入知识库介绍:", value=st.session_state["selected_kb_info"], max_chars=None,
key=None,
help=None, on_change=None, args=None, kwargs=None)
if kb_info != st.session_state["selected_kb_info"]:
st.session_state["selected_kb_info"] = kb_info
api.update_kb_info(kb, kb_info)
# with st.sidebar:
with st.expander(
"文件处理配置",
expanded=True,
):
cols = st.columns(3)
chunk_size = cols[0].number_input("单段文本最大长度:", 1, 1000, CHUNK_SIZE)
chunk_overlap = cols[1].number_input("相邻文本重合长度:", 0, chunk_size, OVERLAP_SIZE)
cols[2].write("")
cols[2].write("")
zh_title_enhance = cols[2].checkbox("开启中文标题加强", ZH_TITLE_ENHANCE)
if st.button(
"添加文件到知识库",
# use_container_width=True,
disabled=len(files) == 0,
):
ret = api.upload_kb_docs(files,
knowledge_base_name=kb,
override=True,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
zh_title_enhance=zh_title_enhance)
if msg := check_success_msg(ret):
st.toast(msg, icon="✔")
elif msg := check_error_msg(ret):
st.toast(msg, icon="✖")
st.divider()
# 知识库详情
# st.info("请选择文件,点击按钮进行操作。")
doc_details = pd.DataFrame(get_kb_file_details(kb))
selected_rows = []
if not len(doc_details):
st.info(f"知识库 `{kb}` 中暂无文件")
else:
st.write(f"知识库 `{kb}` 中已有文件:")
st.info("知识库中包含源文件与向量库,请从下表中选择文件后操作")
doc_details.drop(columns=["kb_name"], inplace=True)
doc_details = doc_details[[
"No", "file_name", "document_loader", "text_splitter", "docs_count", "in_folder", "in_db",
]]
doc_details["in_folder"] = doc_details["in_folder"].replace(True, "✓").replace(False, "×")
doc_details["in_db"] = doc_details["in_db"].replace(True, "✓").replace(False, "×")
gb = config_aggrid(
doc_details,
{
("No", "序号"): {},
("file_name", "文档名称"): {},
# ("file_ext", "文档类型"): {},
# ("file_version", "文档版本"): {},
("document_loader", "文档加载器"): {},
("docs_count", "文档数量"): {},
("text_splitter", "分词器"): {},
# ("create_time", "创建时间"): {},
("in_folder", "源文件"): {"cellRenderer": cell_renderer},
("in_db", "向量库"): {"cellRenderer": cell_renderer},
},
"multiple",
)
doc_grid = AgGrid(
doc_details,
gb.build(),
columns_auto_size_mode="FIT_CONTENTS",
theme="alpine",
custom_css={
"#gridToolBar": {"display": "none"},
},
allow_unsafe_jscode=True,
enable_enterprise_modules=False
)
selected_rows = doc_grid.get("selected_rows", [])
cols = st.columns(4)
file_name, file_path = file_exists(kb, selected_rows)
if file_path:
with open(file_path, "rb") as fp:
cols[0].download_button(
"下载选中文档",
fp,
file_name=file_name,
use_container_width=True, )
else:
cols[0].download_button(
"下载选中文档",
"",
disabled=True,
use_container_width=True, )
st.write()
# 将文件分词并加载到向量库中
if cols[1].button(
"重新添加至向量库" if selected_rows and (
pd.DataFrame(selected_rows)["in_db"]).any() else "添加至向量库",
disabled=not file_exists(kb, selected_rows)[0],
use_container_width=True,
):
file_names = [row["file_name"] for row in selected_rows]
api.update_kb_docs(kb,
file_names=file_names,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
zh_title_enhance=zh_title_enhance)
st.rerun()
# 将文件从向量库中删除,但不删除文件本身。
if cols[2].button(
"从向量库删除",
disabled=not (selected_rows and selected_rows[0]["in_db"]),
use_container_width=True,
):
file_names = [row["file_name"] for row in selected_rows]
api.delete_kb_docs(kb, file_names=file_names)
st.rerun()
if cols[3].button(
"从知识库中删除",
type="primary",
use_container_width=True,
):
file_names = [row["file_name"] for row in selected_rows]
api.delete_kb_docs(kb, file_names=file_names, delete_content=True)
st.rerun()
st.divider()
cols = st.columns(3)
if cols[0].button(
"依据源文件重建向量库",
help="无需上传文件,通过其它方式将文档拷贝到对应知识库content目录下,点击本按钮即可重建知识库。",
use_container_width=True,
type="primary",
):
with st.spinner("向量库重构中,请耐心等待,勿刷新或关闭页面。"):
empty = st.empty()
empty.progress(0.0, "")
for d in api.recreate_vector_store(kb,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
zh_title_enhance=zh_title_enhance):
if msg := check_error_msg(d):
st.toast(msg)
else:
empty.progress(d["finished"] / d["total"], d["msg"])
st.rerun()
if cols[2].button(
"删除知识库",
use_container_width=True,
):
ret = api.delete_knowledge_base(kb)
st.toast(ret.get("msg", " "))
time.sleep(1)
st.rerun()
with st.sidebar:
keyword = st.text_input("查询关键字")
top_k = st.slider("匹配条数", 1, 100, 3)
st.write("文件内文档列表。双击进行修改,在删除列填入 Y 可删除对应行。")
docs = []
df = pd.DataFrame([], columns=["seq", "id", "content", "source"])
if selected_rows:
file_name = selected_rows[0]["file_name"]
docs = api.search_kb_docs(knowledge_base_name=selected_kb, file_name=file_name)
data = [
{"seq": i + 1, "id": x["id"], "page_content": x["page_content"], "source": x["metadata"].get("source"),
"type": x["type"],
"metadata": json.dumps(x["metadata"], ensure_ascii=False),
"to_del": "",
} for i, x in enumerate(docs)]
df = pd.DataFrame(data)
gb = GridOptionsBuilder.from_dataframe(df)
gb.configure_columns(["id", "source", "type", "metadata"], hide=True)
gb.configure_column("seq", "No.", width=50)
gb.configure_column("page_content", "内容", editable=True, autoHeight=True, wrapText=True, flex=1,
cellEditor="agLargeTextCellEditor", cellEditorPopup=True)
gb.configure_column("to_del", "删除", editable=True, width=50, wrapHeaderText=True,
cellEditor="agCheckboxCellEditor", cellRender="agCheckboxCellRenderer")
gb.configure_selection()
edit_docs = AgGrid(df, gb.build())
if st.button("保存更改"):
origin_docs = {
x["id"]: {"page_content": x["page_content"], "type": x["type"], "metadata": x["metadata"]} for x in
docs}
changed_docs = []
for index, row in edit_docs.data.iterrows():
origin_doc = origin_docs[row["id"]]
if row["page_content"] != origin_doc["page_content"]:
if row["to_del"] not in ["Y", "y", 1]:
changed_docs.append({
"page_content": row["page_content"],
"type": row["type"],
"metadata": json.loads(row["metadata"]),
})
if changed_docs:
if api.update_kb_docs(knowledge_base_name=selected_kb,
file_names=[file_name],
docs={file_name: changed_docs}):
st.toast("更新文档成功")
else:
st.toast("更新文档失败")
|