File size: 15,391 Bytes
5e9cd1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import streamlit as st
from webui_pages.utils import *
from st_aggrid import AgGrid, JsCode
from st_aggrid.grid_options_builder import GridOptionsBuilder
import pandas as pd
from server.knowledge_base.utils import get_file_path, LOADER_DICT
from server.knowledge_base.kb_service.base import get_kb_details, get_kb_file_details
from typing import Literal, Dict, Tuple
from configs import (kbs_config,
                     EMBEDDING_MODEL, DEFAULT_VS_TYPE,
                     CHUNK_SIZE, OVERLAP_SIZE, ZH_TITLE_ENHANCE)
from server.utils import list_embed_models, list_online_embed_models
import os
import time

cell_renderer = JsCode("""function(params) {if(params.value==true){return '✓'}else{return '×'}}""")


def config_aggrid(
        df: pd.DataFrame,
        columns: Dict[Tuple[str, str], Dict] = {},
        selection_mode: Literal["single", "multiple", "disabled"] = "single",
        use_checkbox: bool = False,
) -> GridOptionsBuilder:
    gb = GridOptionsBuilder.from_dataframe(df)
    gb.configure_column("No", width=40)
    for (col, header), kw in columns.items():
        gb.configure_column(col, header, wrapHeaderText=True, **kw)
    gb.configure_selection(
        selection_mode=selection_mode,
        use_checkbox=use_checkbox,
        pre_selected_rows=st.session_state.get("selected_rows", [0]),
    )
    gb.configure_pagination(
        enabled=True,
        paginationAutoPageSize=False,
        paginationPageSize=10
    )
    return gb


def file_exists(kb: str, selected_rows: List) -> Tuple[str, str]:
    """
    check whether a doc file exists in local knowledge base folder.
    return the file's name and path if it exists.
    """
    if selected_rows:
        file_name = selected_rows[0]["file_name"]
        file_path = get_file_path(kb, file_name)
        if os.path.isfile(file_path):
            return file_name, file_path
    return "", ""


def knowledge_base_page(api: ApiRequest, is_lite: bool = None):
    try:
        kb_list = {x["kb_name"]: x for x in get_kb_details()}
    except Exception as e:
        st.error(
            "获取知识库信息错误,请检查是否已按照 `README.md` 中 `4 知识库初始化与迁移` 步骤完成初始化或迁移,或是否为数据库连接错误。")
        st.stop()
    kb_names = list(kb_list.keys())

    if "selected_kb_name" in st.session_state and st.session_state["selected_kb_name"] in kb_names:
        selected_kb_index = kb_names.index(st.session_state["selected_kb_name"])
    else:
        selected_kb_index = 0

    if "selected_kb_info" not in st.session_state:
        st.session_state["selected_kb_info"] = ""

    def format_selected_kb(kb_name: str) -> str:
        if kb := kb_list.get(kb_name):
            return f"{kb_name} ({kb['vs_type']} @ {kb['embed_model']})"
        else:
            return kb_name

    selected_kb = st.selectbox(
        "请选择或新建知识库:",
        kb_names + ["新建知识库"],
        format_func=format_selected_kb,
        index=selected_kb_index
    )

    if selected_kb == "新建知识库":
        with st.form("新建知识库"):

            kb_name = st.text_input(
                "新建知识库名称",
                placeholder="新知识库名称,不支持中文命名",
                key="kb_name",
            )
            kb_info = st.text_input(
                "知识库简介",
                placeholder="知识库简介,方便Agent查找",
                key="kb_info",
            )

            cols = st.columns(2)

            vs_types = list(kbs_config.keys())
            vs_type = cols[0].selectbox(
                "向量库类型",
                vs_types,
                index=vs_types.index(DEFAULT_VS_TYPE),
                key="vs_type",
            )

            if is_lite:
                embed_models = list_online_embed_models()
            else:
                embed_models = list_embed_models() + list_online_embed_models()

            embed_model = cols[1].selectbox(
                "Embedding 模型",
                embed_models,
                index=embed_models.index(EMBEDDING_MODEL),
                key="embed_model",
            )

            submit_create_kb = st.form_submit_button(
                "新建",
                # disabled=not bool(kb_name),
                use_container_width=True,
            )

        if submit_create_kb:
            if not kb_name or not kb_name.strip():
                st.error(f"知识库名称不能为空!")
            elif kb_name in kb_list:
                st.error(f"名为 {kb_name} 的知识库已经存在!")
            else:
                ret = api.create_knowledge_base(
                    knowledge_base_name=kb_name,
                    vector_store_type=vs_type,
                    embed_model=embed_model,
                )
                st.toast(ret.get("msg", " "))
                st.session_state["selected_kb_name"] = kb_name
                st.session_state["selected_kb_info"] = kb_info
                st.rerun()

    elif selected_kb:
        kb = selected_kb
        st.session_state["selected_kb_info"] = kb_list[kb]['kb_info']
        # 上传文件
        files = st.file_uploader("上传知识文件:",
                                 [i for ls in LOADER_DICT.values() for i in ls],
                                 accept_multiple_files=True,
                                 )
        kb_info = st.text_area("请输入知识库介绍:", value=st.session_state["selected_kb_info"], max_chars=None,
                               key=None,
                               help=None, on_change=None, args=None, kwargs=None)

        if kb_info != st.session_state["selected_kb_info"]:
            st.session_state["selected_kb_info"] = kb_info
            api.update_kb_info(kb, kb_info)

        # with st.sidebar:
        with st.expander(
                "文件处理配置",
                expanded=True,
        ):
            cols = st.columns(3)
            chunk_size = cols[0].number_input("单段文本最大长度:", 1, 1000, CHUNK_SIZE)
            chunk_overlap = cols[1].number_input("相邻文本重合长度:", 0, chunk_size, OVERLAP_SIZE)
            cols[2].write("")
            cols[2].write("")
            zh_title_enhance = cols[2].checkbox("开启中文标题加强", ZH_TITLE_ENHANCE)

        if st.button(
                "添加文件到知识库",
                # use_container_width=True,
                disabled=len(files) == 0,
        ):
            ret = api.upload_kb_docs(files,
                                     knowledge_base_name=kb,
                                     override=True,
                                     chunk_size=chunk_size,
                                     chunk_overlap=chunk_overlap,
                                     zh_title_enhance=zh_title_enhance)
            if msg := check_success_msg(ret):
                st.toast(msg, icon="✔")
            elif msg := check_error_msg(ret):
                st.toast(msg, icon="✖")

        st.divider()

        # 知识库详情
        # st.info("请选择文件,点击按钮进行操作。")
        doc_details = pd.DataFrame(get_kb_file_details(kb))
        selected_rows = []
        if not len(doc_details):
            st.info(f"知识库 `{kb}` 中暂无文件")
        else:
            st.write(f"知识库 `{kb}` 中已有文件:")
            st.info("知识库中包含源文件与向量库,请从下表中选择文件后操作")
            doc_details.drop(columns=["kb_name"], inplace=True)
            doc_details = doc_details[[
                "No", "file_name", "document_loader", "text_splitter", "docs_count", "in_folder", "in_db",
            ]]
            doc_details["in_folder"] = doc_details["in_folder"].replace(True, "✓").replace(False, "×")
            doc_details["in_db"] = doc_details["in_db"].replace(True, "✓").replace(False, "×")
            gb = config_aggrid(
                doc_details,
                {
                    ("No", "序号"): {},
                    ("file_name", "文档名称"): {},
                    # ("file_ext", "文档类型"): {},
                    # ("file_version", "文档版本"): {},
                    ("document_loader", "文档加载器"): {},
                    ("docs_count", "文档数量"): {},
                    ("text_splitter", "分词器"): {},
                    # ("create_time", "创建时间"): {},
                    ("in_folder", "源文件"): {"cellRenderer": cell_renderer},
                    ("in_db", "向量库"): {"cellRenderer": cell_renderer},
                },
                "multiple",
            )

            doc_grid = AgGrid(
                doc_details,
                gb.build(),
                columns_auto_size_mode="FIT_CONTENTS",
                theme="alpine",
                custom_css={
                    "#gridToolBar": {"display": "none"},
                },
                allow_unsafe_jscode=True,
                enable_enterprise_modules=False
            )

            selected_rows = doc_grid.get("selected_rows", [])

            cols = st.columns(4)
            file_name, file_path = file_exists(kb, selected_rows)
            if file_path:
                with open(file_path, "rb") as fp:
                    cols[0].download_button(
                        "下载选中文档",
                        fp,
                        file_name=file_name,
                        use_container_width=True, )
            else:
                cols[0].download_button(
                    "下载选中文档",
                    "",
                    disabled=True,
                    use_container_width=True, )

            st.write()
            # 将文件分词并加载到向量库中
            if cols[1].button(
                    "重新添加至向量库" if selected_rows and (
                            pd.DataFrame(selected_rows)["in_db"]).any() else "添加至向量库",
                    disabled=not file_exists(kb, selected_rows)[0],
                    use_container_width=True,
            ):
                file_names = [row["file_name"] for row in selected_rows]
                api.update_kb_docs(kb,
                                   file_names=file_names,
                                   chunk_size=chunk_size,
                                   chunk_overlap=chunk_overlap,
                                   zh_title_enhance=zh_title_enhance)
                st.rerun()

            # 将文件从向量库中删除,但不删除文件本身。
            if cols[2].button(
                    "从向量库删除",
                    disabled=not (selected_rows and selected_rows[0]["in_db"]),
                    use_container_width=True,
            ):
                file_names = [row["file_name"] for row in selected_rows]
                api.delete_kb_docs(kb, file_names=file_names)
                st.rerun()

            if cols[3].button(
                    "从知识库中删除",
                    type="primary",
                    use_container_width=True,
            ):
                file_names = [row["file_name"] for row in selected_rows]
                api.delete_kb_docs(kb, file_names=file_names, delete_content=True)
                st.rerun()

        st.divider()

        cols = st.columns(3)

        if cols[0].button(
                "依据源文件重建向量库",
                help="无需上传文件,通过其它方式将文档拷贝到对应知识库content目录下,点击本按钮即可重建知识库。",
                use_container_width=True,
                type="primary",
        ):
            with st.spinner("向量库重构中,请耐心等待,勿刷新或关闭页面。"):
                empty = st.empty()
                empty.progress(0.0, "")
                for d in api.recreate_vector_store(kb,
                                                   chunk_size=chunk_size,
                                                   chunk_overlap=chunk_overlap,
                                                   zh_title_enhance=zh_title_enhance):
                    if msg := check_error_msg(d):
                        st.toast(msg)
                    else:
                        empty.progress(d["finished"] / d["total"], d["msg"])
                st.rerun()

        if cols[2].button(
                "删除知识库",
                use_container_width=True,
        ):
            ret = api.delete_knowledge_base(kb)
            st.toast(ret.get("msg", " "))
            time.sleep(1)
            st.rerun()

        with st.sidebar:
            keyword = st.text_input("查询关键字")
            top_k = st.slider("匹配条数", 1, 100, 3)

        st.write("文件内文档列表。双击进行修改,在删除列填入 Y 可删除对应行。")
        docs = []
        df = pd.DataFrame([], columns=["seq", "id", "content", "source"])
        if selected_rows:
            file_name = selected_rows[0]["file_name"]
            docs = api.search_kb_docs(knowledge_base_name=selected_kb, file_name=file_name)
            data = [
                {"seq": i + 1, "id": x["id"], "page_content": x["page_content"], "source": x["metadata"].get("source"),
                 "type": x["type"],
                 "metadata": json.dumps(x["metadata"], ensure_ascii=False),
                 "to_del": "",
                 } for i, x in enumerate(docs)]
            df = pd.DataFrame(data)

            gb = GridOptionsBuilder.from_dataframe(df)
            gb.configure_columns(["id", "source", "type", "metadata"], hide=True)
            gb.configure_column("seq", "No.", width=50)
            gb.configure_column("page_content", "内容", editable=True, autoHeight=True, wrapText=True, flex=1,
                                cellEditor="agLargeTextCellEditor", cellEditorPopup=True)
            gb.configure_column("to_del", "删除", editable=True, width=50, wrapHeaderText=True,
                                cellEditor="agCheckboxCellEditor", cellRender="agCheckboxCellRenderer")
            gb.configure_selection()
            edit_docs = AgGrid(df, gb.build())

            if st.button("保存更改"):
                origin_docs = {
                    x["id"]: {"page_content": x["page_content"], "type": x["type"], "metadata": x["metadata"]} for x in
                    docs}
                changed_docs = []
                for index, row in edit_docs.data.iterrows():
                    origin_doc = origin_docs[row["id"]]
                    if row["page_content"] != origin_doc["page_content"]:
                        if row["to_del"] not in ["Y", "y", 1]:
                            changed_docs.append({
                                "page_content": row["page_content"],
                                "type": row["type"],
                                "metadata": json.loads(row["metadata"]),
                            })

                if changed_docs:
                    if api.update_kb_docs(knowledge_base_name=selected_kb,
                                          file_names=[file_name],
                                          docs={file_name: changed_docs}):
                        st.toast("更新文档成功")
                    else:
                        st.toast("更新文档失败")