File size: 20,935 Bytes
5e9cd1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import streamlit as st
from webui_pages.utils import *
from streamlit_chatbox import *
from streamlit_modal import Modal
from datetime import datetime
import os
import re
import time
from configs import (TEMPERATURE, HISTORY_LEN, PROMPT_TEMPLATES, LLM_MODELS,
                     DEFAULT_KNOWLEDGE_BASE, DEFAULT_SEARCH_ENGINE, SUPPORT_AGENT_MODEL)
from server.knowledge_base.utils import LOADER_DICT
import uuid
from typing import List, Dict

chat_box = ChatBox(
    assistant_avatar=os.path.join(
        "img",
        "chatchat_icon_blue_square_v2.png"
    )
)


def get_messages_history(history_len: int, content_in_expander: bool = False) -> List[Dict]:
    '''
    返回消息历史。
    content_in_expander控制是否返回expander元素中的内容,一般导出的时候可以选上,传入LLM的history不需要
    '''

    def filter(msg):
        content = [x for x in msg["elements"] if x._output_method in ["markdown", "text"]]
        if not content_in_expander:
            content = [x for x in content if not x._in_expander]
        content = [x.content for x in content]

        return {
            "role": msg["role"],
            "content": "\n\n".join(content),
        }

    return chat_box.filter_history(history_len=history_len, filter=filter)


@st.cache_data
def upload_temp_docs(files, _api: ApiRequest) -> str:
    '''
    将文件上传到临时目录,用于文件对话
    返回临时向量库ID
    '''
    return _api.upload_temp_docs(files).get("data", {}).get("id")


def parse_command(text: str, modal: Modal) -> bool:
    '''
    检查用户是否输入了自定义命令,当前支持:
    /new {session_name}。如果未提供名称,默认为“会话X”
    /del {session_name}。如果未提供名称,在会话数量>1的情况下,删除当前会话。
    /clear {session_name}。如果未提供名称,默认清除当前会话
    /help。查看命令帮助
    返回值:输入的是命令返回True,否则返回False
    '''
    if m := re.match(r"/([^\s]+)\s*(.*)", text):
        cmd, name = m.groups()
        name = name.strip()
        conv_names = chat_box.get_chat_names()
        if cmd == "help":
            modal.open()
        elif cmd == "new":
            if not name:
                i = 1
                while True:
                    name = f"会话{i}"
                    if name not in conv_names:
                        break
                    i += 1
            if name in st.session_state["conversation_ids"]:
                st.error(f"该会话名称 “{name}” 已存在")
                time.sleep(1)
            else:
                st.session_state["conversation_ids"][name] = uuid.uuid4().hex
                st.session_state["cur_conv_name"] = name
        elif cmd == "del":
            name = name or st.session_state.get("cur_conv_name")
            if len(conv_names) == 1:
                st.error("这是最后一个会话,无法删除")
                time.sleep(1)
            elif not name or name not in st.session_state["conversation_ids"]:
                st.error(f"无效的会话名称:“{name}”")
                time.sleep(1)
            else:
                st.session_state["conversation_ids"].pop(name, None)
                chat_box.del_chat_name(name)
                st.session_state["cur_conv_name"] = ""
        elif cmd == "clear":
            chat_box.reset_history(name=name or None)
        return True
    return False


def dialogue_page(api: ApiRequest, is_lite: bool = False):
    st.session_state.setdefault("conversation_ids", {})
    st.session_state["conversation_ids"].setdefault(chat_box.cur_chat_name, uuid.uuid4().hex)
    st.session_state.setdefault("file_chat_id", None)
    default_model = api.get_default_llm_model()[0]

    if not chat_box.chat_inited:
        st.toast(
            f"欢迎使用 [`Langchain-Chatchat`](https://github.com/chatchat-space/Langchain-Chatchat) ! \n\n"
            f"当前运行的模型`{default_model}`, 您可以开始提问了."
        )
        chat_box.init_session()

    # 弹出自定义命令帮助信息
    modal = Modal("自定义命令", key="cmd_help", max_width="500")
    if modal.is_open():
        with modal.container():
            cmds = [x for x in parse_command.__doc__.split("\n") if x.strip().startswith("/")]
            st.write("\n\n".join(cmds))

    with st.sidebar:
        # 多会话
        conv_names = list(st.session_state["conversation_ids"].keys())
        index = 0
        if st.session_state.get("cur_conv_name") in conv_names:
            index = conv_names.index(st.session_state.get("cur_conv_name"))
        conversation_name = st.selectbox("当前会话:", conv_names, index=index)
        chat_box.use_chat_name(conversation_name)
        conversation_id = st.session_state["conversation_ids"][conversation_name]

        def on_mode_change():
            mode = st.session_state.dialogue_mode
            text = f"已切换到 {mode} 模式。"
            if mode == "知识库问答":
                cur_kb = st.session_state.get("selected_kb")
                if cur_kb:
                    text = f"{text} 当前知识库: `{cur_kb}`。"
            st.toast(text)

        dialogue_modes = ["LLM 对话",
                          "知识库问答",
                          "文件对话",
                          "搜索引擎问答",
                          "自定义Agent问答",
                          ]
        dialogue_mode = st.selectbox("请选择对话模式:",
                                     dialogue_modes,
                                     index=0,
                                     on_change=on_mode_change,
                                     key="dialogue_mode",
                                     )

        def on_llm_change():
            if llm_model:
                config = api.get_model_config(llm_model)
                if not config.get("online_api"):  # 只有本地model_worker可以切换模型
                    st.session_state["prev_llm_model"] = llm_model
                st.session_state["cur_llm_model"] = st.session_state.llm_model

        def llm_model_format_func(x):
            if x in running_models:
                return f"{x} (Running)"
            return x

        running_models = list(api.list_running_models())
        available_models = []
        config_models = api.list_config_models()
        if not is_lite:
            for k, v in config_models.get("local", {}).items():
                if (v.get("model_path_exists")
                        and k not in running_models):
                    available_models.append(k)
        for k, v in config_models.get("online", {}).items():
            if not v.get("provider") and k not in running_models and k in LLM_MODELS:
                available_models.append(k)
        llm_models = running_models + available_models
        cur_llm_model = st.session_state.get("cur_llm_model", default_model)
        if cur_llm_model in llm_models:
            index = llm_models.index(cur_llm_model)
        else:
            index = 0
        llm_model = st.selectbox("选择LLM模型:",
                                 llm_models,
                                 index,
                                 format_func=llm_model_format_func,
                                 on_change=on_llm_change,
                                 key="llm_model",
                                 )
        if (st.session_state.get("prev_llm_model") != llm_model
                and not is_lite
                and not llm_model in config_models.get("online", {})
                and not llm_model in config_models.get("langchain", {})
                and llm_model not in running_models):
            with st.spinner(f"正在加载模型: {llm_model},请勿进行操作或刷新页面"):
                prev_model = st.session_state.get("prev_llm_model")
                r = api.change_llm_model(prev_model, llm_model)
                if msg := check_error_msg(r):
                    st.error(msg)
                elif msg := check_success_msg(r):
                    st.success(msg)
                    st.session_state["prev_llm_model"] = llm_model

        index_prompt = {
            "LLM 对话": "llm_chat",
            "自定义Agent问答": "agent_chat",
            "搜索引擎问答": "search_engine_chat",
            "知识库问答": "knowledge_base_chat",
            "文件对话": "knowledge_base_chat",
        }
        prompt_templates_kb_list = list(PROMPT_TEMPLATES[index_prompt[dialogue_mode]].keys())
        prompt_template_name = prompt_templates_kb_list[0]
        if "prompt_template_select" not in st.session_state:
            st.session_state.prompt_template_select = prompt_templates_kb_list[0]

        def prompt_change():
            text = f"已切换为 {prompt_template_name} 模板。"
            st.toast(text)

        prompt_template_select = st.selectbox(
            "请选择Prompt模板:",
            prompt_templates_kb_list,
            index=0,
            on_change=prompt_change,
            key="prompt_template_select",
        )
        prompt_template_name = st.session_state.prompt_template_select
        temperature = st.slider("Temperature:", 0.0, 2.0, TEMPERATURE, 0.05)
        history_len = st.number_input("历史对话轮数:", 0, 20, HISTORY_LEN)

        def on_kb_change():
            st.toast(f"已加载知识库: {st.session_state.selected_kb}")

        if dialogue_mode == "知识库问答":
            with st.expander("知识库配置", True):
                kb_list = api.list_knowledge_bases()
                index = 0
                if DEFAULT_KNOWLEDGE_BASE in kb_list:
                    index = kb_list.index(DEFAULT_KNOWLEDGE_BASE)
                selected_kb = st.selectbox(
                    "请选择知识库:",
                    kb_list,
                    index=index,
                    on_change=on_kb_change,
                    key="selected_kb",
                )
                kb_top_k = st.number_input("匹配知识条数:", 1, 20, VECTOR_SEARCH_TOP_K)

                ## Bge 模型会超过1
                score_threshold = st.slider("知识匹配分数阈值:", 0.0, 2.0, float(SCORE_THRESHOLD), 0.01)
        elif dialogue_mode == "文件对话":
            with st.expander("文件对话配置", True):
                files = st.file_uploader("上传知识文件:",
                                         [i for ls in LOADER_DICT.values() for i in ls],
                                         accept_multiple_files=True,
                                         )
                kb_top_k = st.number_input("匹配知识条数:", 1, 20, VECTOR_SEARCH_TOP_K)

                ## Bge 模型会超过1
                score_threshold = st.slider("知识匹配分数阈值:", 0.0, 2.0, float(SCORE_THRESHOLD), 0.01)
                if st.button("开始上传", disabled=len(files) == 0):
                    st.session_state["file_chat_id"] = upload_temp_docs(files, api)
        elif dialogue_mode == "搜索引擎问答":
            search_engine_list = api.list_search_engines()
            if DEFAULT_SEARCH_ENGINE in search_engine_list:
                index = search_engine_list.index(DEFAULT_SEARCH_ENGINE)
            else:
                index = search_engine_list.index("duckduckgo") if "duckduckgo" in search_engine_list else 0
            with st.expander("搜索引擎配置", True):
                search_engine = st.selectbox(
                    label="请选择搜索引擎",
                    options=search_engine_list,
                    index=index,
                )
                se_top_k = st.number_input("匹配搜索结果条数:", 1, 20, SEARCH_ENGINE_TOP_K)

    # Display chat messages from history on app rerun
    chat_box.output_messages()

    chat_input_placeholder = "请输入对话内容,换行请使用Shift+Enter。输入/help查看自定义命令 "

    def on_feedback(
            feedback,
            message_id: str = "",
            history_index: int = -1,
    ):
        reason = feedback["text"]
        score_int = chat_box.set_feedback(feedback=feedback, history_index=history_index)
        api.chat_feedback(message_id=message_id,
                          score=score_int,
                          reason=reason)
        st.session_state["need_rerun"] = True

    feedback_kwargs = {
        "feedback_type": "thumbs",
        "optional_text_label": "欢迎反馈您打分的理由",
    }

    if prompt := st.chat_input(chat_input_placeholder, key="prompt"):
        if parse_command(text=prompt, modal=modal):  # 用户输入自定义命令
            st.rerun()
        else:
            history = get_messages_history(history_len)
            chat_box.user_say(prompt)
            if dialogue_mode == "LLM 对话":
                chat_box.ai_say("正在思考...")
                text = ""
                message_id = ""
                r = api.chat_chat(prompt,
                                  history=history,
                                  conversation_id=conversation_id,
                                  model=llm_model,
                                  prompt_name=prompt_template_name,
                                  temperature=temperature)
                for t in r:
                    if error_msg := check_error_msg(t):  # check whether error occured
                        st.error(error_msg)
                        break
                    text += t.get("text", "")
                    chat_box.update_msg(text)
                    message_id = t.get("message_id", "")

                metadata = {
                    "message_id": message_id,
                }
                chat_box.update_msg(text, streaming=False, metadata=metadata)  # 更新最终的字符串,去除光标
                chat_box.show_feedback(**feedback_kwargs,
                                       key=message_id,
                                       on_submit=on_feedback,
                                       kwargs={"message_id": message_id, "history_index": len(chat_box.history) - 1})

            elif dialogue_mode == "自定义Agent问答":
                if not any(agent in llm_model for agent in SUPPORT_AGENT_MODEL):
                    chat_box.ai_say([
                        f"正在思考... \n\n <span style='color:red'>该模型并没有进行Agent对齐,请更换支持Agent的模型获得更好的体验!</span>\n\n\n",
                        Markdown("...", in_expander=True, title="思考过程", state="complete"),

                    ])
                else:
                    chat_box.ai_say([
                        f"正在思考...",
                        Markdown("...", in_expander=True, title="思考过程", state="complete"),

                    ])
                text = ""
                ans = ""
                for d in api.agent_chat(prompt,
                                        history=history,
                                        model=llm_model,
                                        prompt_name=prompt_template_name,
                                        temperature=temperature,
                                        ):
                    try:
                        d = json.loads(d)
                    except:
                        pass
                    if error_msg := check_error_msg(d):  # check whether error occured
                        st.error(error_msg)
                    if chunk := d.get("answer"):
                        text += chunk
                        chat_box.update_msg(text, element_index=1)
                    if chunk := d.get("final_answer"):
                        ans += chunk
                        chat_box.update_msg(ans, element_index=0)
                    if chunk := d.get("tools"):
                        text += "\n\n".join(d.get("tools", []))
                        chat_box.update_msg(text, element_index=1)
                chat_box.update_msg(ans, element_index=0, streaming=False)
                chat_box.update_msg(text, element_index=1, streaming=False)
            elif dialogue_mode == "知识库问答":
                chat_box.ai_say([
                    f"正在查询知识库 `{selected_kb}` ...",
                    Markdown("...", in_expander=True, title="知识库匹配结果", state="complete"),
                ])
                text = ""
                for d in api.knowledge_base_chat(prompt,
                                                 knowledge_base_name=selected_kb,
                                                 top_k=kb_top_k,
                                                 score_threshold=score_threshold,
                                                 history=history,
                                                 model=llm_model,
                                                 prompt_name=prompt_template_name,
                                                 temperature=temperature):
                    if error_msg := check_error_msg(d):  # check whether error occured
                        st.error(error_msg)
                    elif chunk := d.get("answer"):
                        text += chunk
                        chat_box.update_msg(text, element_index=0)
                chat_box.update_msg(text, element_index=0, streaming=False)
                chat_box.update_msg("\n\n".join(d.get("docs", [])), element_index=1, streaming=False)
            elif dialogue_mode == "文件对话":
                if st.session_state["file_chat_id"] is None:
                    st.error("请先上传文件再进行对话")
                    st.stop()
                chat_box.ai_say([
                    f"正在查询文件 `{st.session_state['file_chat_id']}` ...",
                    Markdown("...", in_expander=True, title="文件匹配结果", state="complete"),
                ])
                text = ""
                for d in api.file_chat(prompt,
                                       knowledge_id=st.session_state["file_chat_id"],
                                       top_k=kb_top_k,
                                       score_threshold=score_threshold,
                                       history=history,
                                       model=llm_model,
                                       prompt_name=prompt_template_name,
                                       temperature=temperature):
                    if error_msg := check_error_msg(d):  # check whether error occured
                        st.error(error_msg)
                    elif chunk := d.get("answer"):
                        text += chunk
                        chat_box.update_msg(text, element_index=0)
                chat_box.update_msg(text, element_index=0, streaming=False)
                chat_box.update_msg("\n\n".join(d.get("docs", [])), element_index=1, streaming=False)
            elif dialogue_mode == "搜索引擎问答":
                chat_box.ai_say([
                    f"正在执行 `{search_engine}` 搜索...",
                    Markdown("...", in_expander=True, title="网络搜索结果", state="complete"),
                ])
                text = ""
                for d in api.search_engine_chat(prompt,
                                                search_engine_name=search_engine,
                                                top_k=se_top_k,
                                                history=history,
                                                model=llm_model,
                                                prompt_name=prompt_template_name,
                                                temperature=temperature,
                                                split_result=se_top_k > 1):
                    if error_msg := check_error_msg(d):  # check whether error occured
                        st.error(error_msg)
                    elif chunk := d.get("answer"):
                        text += chunk
                        chat_box.update_msg(text, element_index=0)
                chat_box.update_msg(text, element_index=0, streaming=False)
                chat_box.update_msg("\n\n".join(d.get("docs", [])), element_index=1, streaming=False)

    if st.session_state.get("need_rerun"):
        st.session_state["need_rerun"] = False
        st.rerun()

    now = datetime.now()
    with st.sidebar:

        cols = st.columns(2)
        export_btn = cols[0]
        if cols[1].button(
                "清空对话",
                use_container_width=True,
        ):
            chat_box.reset_history()
            st.rerun()

    export_btn.download_button(
        "导出记录",
        "".join(chat_box.export2md()),
        file_name=f"{now:%Y-%m-%d %H.%M}_对话记录.md",
        mime="text/markdown",
        use_container_width=True,
    )