RekaFlash / app.py
ZoroaStrella's picture
Add transformers dependency and correct errors
e970aef
raw
history blame
5.61 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
# Configuration
MODEL_NAME = "RekaAI/reka-flash-3"
DEFAULT_MAX_LENGTH = 4096 # Reduced for CPU efficiency
DEFAULT_TEMPERATURE = 0.7
# System prompt with reasoning instructions
SYSTEM_PROMPT = """You are Reka Flash-3, a helpful AI assistant created by Reka AI.
When responding, think step-by-step within <thinking> tags and conclude your answer after </thinking>.
For example:
User: What is 2+2?
Assistant: <thinking>Let me calculate that. 2 plus 2 equals 4.</thinking> The answer is 4."""
# Load model and tokenizer with 4-bit quantization
try:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
quantization_config=quantization_config,
device_map="auto", # Maps to CPU
torch_dtype=torch.float16
)
tokenizer.pad_token = tokenizer.eos_token # Ensure padding works
except Exception as e:
raise Exception(f"Failed to load model: {str(e)}. Ensure access to {MODEL_NAME} and sufficient CPU memory.")
def generate_response(
message,
chat_history,
system_prompt,
max_length,
temperature,
top_p,
top_k,
repetition_penalty,
show_reasoning
):
"""Generate a response from Reka Flash-3 with reasoning tags."""
try:
# Format chat history and prompt (multi-round conversation)
history_str = ""
for user_msg, assistant_msg in chat_history:
history_str += f"human: {user_msg} <sep> assistant: {assistant_msg} <sep> "
prompt = f"{system_prompt} <sep> human: {message} <sep> assistant: <thinking>\n"
# Tokenize input
inputs = tokenizer(prompt, return_tensors="pt").to("cpu")
# Generate response with budget forcing
outputs = model.generate(
**inputs,
max_new_tokens=max_length,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
do_sample=True,
eos_token_id=tokenizer.convert_tokens_to_ids("<sep>"), # Stop at <sep>
pad_token_id=tokenizer.eos_token_id
)
# Decode and clean response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response[len(prompt):].split("<sep>")[0].strip() # Extract assistant response
# Parse reasoning and final answer
if "</thinking>" in response:
reasoning, final_answer = response.split("</thinking>", 1)
reasoning = reasoning.replace("<thinking>", "").strip()
final_answer = final_answer.strip()
else:
reasoning = ""
final_answer = response
# Update chat history (drop reasoning to save tokens)
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": final_answer})
# Display reasoning if requested
reasoning_display = f"**Reasoning:**\n{reasoning}" if show_reasoning and reasoning else ""
return "", chat_history, reasoning_display
except Exception as e:
error_msg = f"Error: {str(e)}"
gr.Warning(error_msg)
return "", chat_history, error_msg
# Gradio Interface
with gr.Blocks(title="Reka Flash-3 Chat", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Reka Flash-3 Chat Interface
*Powered by [Reka AI](https://www.reka.ai/)* - A 21B parameter reasoning model optimized for CPU.
""")
with gr.Accordion("Deployment Instructions", open=True):
gr.Textbox(
value="""To deploy on Hugging Face Spaces:
1. Request access to RekaAI/reka-flash-3 from Reka AI.
2. Use a Pro subscription with zero-GPU (CPU-only) hardware.
3. Ensure 32GB+ CPU memory for 4-bit quantization.
4. Install dependencies: gradio, transformers, torch, bitsandbytes.""",
label="How to Deploy",
interactive=False
)
with gr.Row():
chatbot = gr.Chatbot(type="messages", height=400, label="Conversation")
reasoning_display = gr.Textbox(label="Model Reasoning", interactive=False, lines=8)
with gr.Row():
message = gr.Textbox(label="Your Message", placeholder="Ask me anything...", lines=2)
submit_btn = gr.Button("Send", variant="primary")
with gr.Accordion("Options", open=True):
max_length = gr.Slider(128, 512, value=DEFAULT_MAX_LENGTH, label="Max Length", step=64)
temperature = gr.Slider(0.1, 2.0, value=DEFAULT_TEMPERATURE, label="Temperature", step=0.1)
top_p = gr.Slider(0.0, 1.0, value=0.95, label="Top-p", step=0.05)
top_k = gr.Slider(1, 100, value=50, label="Top-k", step=1)
repetition_penalty = gr.Slider(0.1, 2.0, value=1.1, label="Repetition Penalty", step=0.1)
system_prompt = gr.Textbox(label="System Prompt", value=SYSTEM_PROMPT, lines=4)
show_reasoning = gr.Checkbox(label="Show Reasoning", value=True)
# Event handling
inputs = [message, chatbot, system_prompt, max_length, temperature, top_p, top_k, repetition_penalty, show_reasoning]
outputs = [message, chatbot, reasoning_display]
submit_btn.click(generate_response, inputs=inputs, outputs=outputs)
message.submit(generate_response, inputs=inputs, outputs=outputs)
demo.launch(debug=True)