File size: 6,526 Bytes
30fabb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eda955
30fabb4
 
 
 
7eda955
 
 
 
 
 
 
 
30fabb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import re
import requests
import textwrap
from dataclasses import dataclass
from typing import List, Optional

@dataclass
class CoTStep:
    """Data class representing a single CoT step"""
    number: int
    content: str

@dataclass
class CoTResponse:
    """Data class representing a complete CoT response"""
    question: str
    steps: List[CoTStep]
    answer: Optional[str] = None

@dataclass
class VisualizationConfig:
    """Configuration for CoT visualization"""
    max_chars_per_line: int = 40
    max_lines: int = 4
    truncation_suffix: str = "..."

class AnthropicAPI:
    """Class to handle interactions with the Anthropic API"""
    def __init__(self, api_key: str, model: str = "claude-3-opus-20240229"):
        self.api_key = api_key
        self.model = model
        self.base_url = "https://api.anthropic.com/v1/messages"
        self.headers = {
            "x-api-key": api_key,
            "anthropic-version": "2023-06-01",
            "content-type": "application/json"
        }

    def generate_response(self, prompt: str, max_tokens: int = 1024, prompt_format: str = None) -> str:
        """Generate a response using the Anthropic API"""
        formatted_prompt = self._format_prompt(prompt, prompt_format) if prompt_format else prompt
        data = {
            "model": self.model,
            "messages": [{"role": "user", "content": formatted_prompt}],
            "max_tokens": max_tokens
        }
        
        try:
            response = requests.post(self.base_url, headers=self.headers, json=data)
            response.raise_for_status()
            return response.json()["content"][0]["text"]
        except Exception as e:
            raise Exception(f"API call failed: {str(e)}")

    def _format_prompt(self, question: str, prompt_format: str = None) -> str:
        """Format the prompt using custom format if provided"""
        if prompt_format:
            return prompt_format.format(question=question)
        
        # Default format if none provided
        return f"""Please answer the question using the following format, with each step clearly marked:

Question: {question}

Let's solve this step by step:
<step number="1">
[First step of reasoning]
</step>
<step number="2">
[Second step of reasoning]
</step>
<step number="3">
[Third step of reasoning]
</step>
... (add more steps as needed)
<answer>
[Final answer]
</answer>

Note:
1. Each step must be wrapped in XML tags <step>
2. Each step must have a number attribute
3. The final answer must be wrapped in <answer> tags
"""

def wrap_text(text: str, config: VisualizationConfig) -> str:
    """Wrap text to fit within box constraints"""
    text = text.replace('\n', ' ').replace('"', "'")
    wrapped_lines = textwrap.wrap(text, width=config.max_chars_per_line)
    
    if len(wrapped_lines) > config.max_lines:
        # Option 1: Simply truncate and add ellipsis to the last line
        wrapped_lines = wrapped_lines[:config.max_lines]
        wrapped_lines[-1] = wrapped_lines[-1][:config.max_chars_per_line-3] + "..."
        
        # Option 2 (alternative): Include part of the next line to show continuity
        # original_next_line = wrapped_lines[config.max_lines] if len(wrapped_lines) > config.max_lines else ""
        # wrapped_lines = wrapped_lines[:config.max_lines-1]
        # wrapped_lines.append(original_next_line[:config.max_chars_per_line-3] + "...")
    
    return "<br>".join(wrapped_lines)

def parse_cot_response(response_text: str, question: str) -> CoTResponse:
    """
    Parse CoT response text to extract steps and final answer.
    
    Args:
        response_text: The raw response from the API
        question: The original question
    
    Returns:
        CoTResponse object containing question, steps, and answer
    """
    # Extract all steps
    step_pattern = r'<step number="(\d+)">\s*(.*?)\s*</step>'
    steps = []
    for match in re.finditer(step_pattern, response_text, re.DOTALL):
        number = int(match.group(1))
        content = match.group(2).strip()
        steps.append(CoTStep(number=number, content=content))
    
    # Extract answer
    answer_pattern = r'<answer>\s*(.*?)\s*</answer>'
    answer_match = re.search(answer_pattern, response_text, re.DOTALL)
    answer = answer_match.group(1).strip() if answer_match else None
    
    # Sort steps by number
    steps.sort(key=lambda x: x.number)
    
    return CoTResponse(question=question, steps=steps, answer=answer)

def create_mermaid_diagram(cot_response: CoTResponse, config: VisualizationConfig) -> str:
    """
    Convert CoT steps to Mermaid diagram with improved text wrapping.
    
    Args:
        cot_response: CoTResponse object containing the reasoning steps
        config: VisualizationConfig for text formatting
    
    Returns:
        Mermaid diagram markup as a string
    """
    diagram = ['<div class="mermaid">', 'graph TD']
    
    # Add question node
    question_content = wrap_text(cot_response.question, config)
    diagram.append(f'    Q["{question_content}"]')
    
    # Add steps with wrapped text and connect them
    if cot_response.steps:
        # Connect question to first step
        diagram.append(f'    Q --> S{cot_response.steps[0].number}')
        
        # Add all steps
        for i, step in enumerate(cot_response.steps):
            content = wrap_text(step.content, config)
            node_id = f'S{step.number}'
            diagram.append(f'    {node_id}["{content}"]')
            
            # Connect steps sequentially
            if i < len(cot_response.steps) - 1:
                next_id = f'S{cot_response.steps[i + 1].number}'
                diagram.append(f'    {node_id} --> {next_id}')
    
    # Add final answer node
    if cot_response.answer:
        answer = wrap_text(cot_response.answer, config)
        diagram.append(f'    A["{answer}"]')
        if cot_response.steps:
            diagram.append(f'    S{cot_response.steps[-1].number} --> A')
        else:
            diagram.append('    Q --> A')
    
    # Add styles for better visualization
    diagram.extend([
        '    classDef default fill:#f9f9f9,stroke:#333,stroke-width:2px;',
        '    classDef question fill:#e3f2fd,stroke:#1976d2,stroke-width:2px;',
        '    classDef answer fill:#d4edda,stroke:#28a745,stroke-width:2px;',
        '    class Q question;',
        '    class A answer;',
        '    linkStyle default stroke:#666,stroke-width:2px;'
    ])
    
    diagram.append('</div>')
    return '\n'.join(diagram)