Update app.py
Browse files
app.py
CHANGED
@@ -4,9 +4,9 @@ from transformers import Wav2Vec2FeatureExtractor
|
|
4 |
from datasets import Dataset
|
5 |
import librosa
|
6 |
|
7 |
-
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-large-superb-er")
|
8 |
-
|
9 |
def get_emotion(microphone, file_upload, task):
|
|
|
|
|
10 |
warn_output = ""
|
11 |
|
12 |
if (microphone is not None) and (file_upload is not None):
|
@@ -17,6 +17,7 @@ def get_emotion(microphone, file_upload, task):
|
|
17 |
elif (microphone is None) and (file_upload is None):
|
18 |
return "ERROR: You have to either use the microphone or upload an audio file"
|
19 |
|
|
|
20 |
file = microphone if microphone is not None else file_upload
|
21 |
test = feature_extractor(file, sampling_rate=16000, padding=True, return_tensors="pt" ).to(torch.float32)
|
22 |
logits = model(**test).logits
|
|
|
4 |
from datasets import Dataset
|
5 |
import librosa
|
6 |
|
|
|
|
|
7 |
def get_emotion(microphone, file_upload, task):
|
8 |
+
|
9 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-large-superb-er")
|
10 |
warn_output = ""
|
11 |
|
12 |
if (microphone is not None) and (file_upload is not None):
|
|
|
17 |
elif (microphone is None) and (file_upload is None):
|
18 |
return "ERROR: You have to either use the microphone or upload an audio file"
|
19 |
|
20 |
+
|
21 |
file = microphone if microphone is not None else file_upload
|
22 |
test = feature_extractor(file, sampling_rate=16000, padding=True, return_tensors="pt" ).to(torch.float32)
|
23 |
logits = model(**test).logits
|