import faiss import numpy as np from fastapi import FastAPI, Query from datasets import load_dataset from sentence_transformers import SentenceTransformer app = FastAPI() FIELDS = ( "full_name", "description", "watchers_count", "forks_count", "license", "default_branch", "has_build_zig", "has_build_zig_zon", "fork", "open_issues", "stargazers_count", "updated_at", "created_at", "size" ) model = SentenceTransformer("all-MiniLM-L6-v2") def load_dataset_with_fields(name, include_readme=False): dataset = load_dataset(name)["train"] repo_texts = [ " ".join(str(x.get(field, "")) for field in FIELDS) + (" " + x.get("readme_content", "")) * include_readme + " " + " ".join(x.get("topics", [])) for x in dataset ] if not include_readme: dataset = [{k: v for k, v in item.items() if k != "readme_content"} for item in dataset] return dataset, repo_texts datasets = { "packages": load_dataset_with_fields("zigistry/packages", include_readme=True), "programs": load_dataset_with_fields("zigistry/programs", include_readme=True), } indices = {} for key, (dataset, repo_texts) in datasets.items(): repo_embeddings = model.encode(repo_texts) index = faiss.IndexFlatL2(repo_embeddings.shape[1]) index.add(np.array(repo_embeddings)) indices[key] = (index, dataset) scroll_data = { "infiniteScrollPackages": load_dataset_with_fields("zigistry/packages", include_readme=False)[0], "infiniteScrollPrograms": load_dataset_with_fields("zigistry/programs", include_readme=False)[0], } @app.get("/infiniteScrollPackages/") def infinite_scroll_packages(q: int = Query(0, ge=0)): start = q * 10 return scroll_data["infiniteScrollPackages"][start : start + 10] @app.get("/infiniteScrollPrograms/") def infinite_scroll_programs(q: int = Query(0, ge=0)): start = q * 10 return scroll_data["infiniteScrollPrograms"][start : start + 10] @app.get("/searchSomething/") def search_something(q: str): key = "packages" if "package" in q.lower() else "programs" if key not in indices: return {"error": "Invalid category"} index, dataset = indices[key] query_embedding = model.encode([q]) distances, indices_ = index.search(np.array(query_embedding), len(dataset)) min_distance = distances[0][0] threshold = min_distance * 1.5 results = [dataset[int(i)] for d, i in zip(distances[0], indices_[0]) if d <= threshold] return results[:280] if len(results) > 280 else results