import faiss import numpy as np from fastapi import FastAPI, Query from fastapi.responses import JSONResponse from datasets import load_dataset from sentence_transformers import SentenceTransformer app = FastAPI() FIELDS = ( "full_name", "description", "default_branch", "open_issues", "stargazers_count", "forks_count", "watchers_count", "license", "size", "fork", "updated_at", "has_build_zig", "has_build_zig_zon", "created_at", ) model = SentenceTransformer("all-MiniLM-L6-v2") def load_dataset_with_fields(name, include_readme=False): dataset = load_dataset(name)["train"] repo_texts = [ " ".join(str(x.get(field, "")) for field in FIELDS) + (" " + x.get("readme_content", "")) * include_readme + " " + " ".join(x.get("topics", [])) for x in dataset ] if not include_readme: dataset = [{k: v for k, v in item.items() if k != "readme_content"} for item in dataset] return dataset, repo_texts datasets = { "packages": load_dataset_with_fields("zigistry/packages", include_readme=True), "programs": load_dataset_with_fields("zigistry/programs", include_readme=True), } indices = {} for key, (dataset, repo_texts) in datasets.items(): repo_embeddings = model.encode(repo_texts) index = faiss.IndexFlatL2(repo_embeddings.shape[1]) index.add(np.array(repo_embeddings)) indices[key] = (index, dataset) scroll_data = { "infiniteScrollPackages": load_dataset_with_fields("zigistry/packages", include_readme=False)[0], "infiniteScrollPrograms": load_dataset_with_fields("zigistry/programs", include_readme=False)[0], } def filter_results_by_distance(distances, idxs, dataset, max_results=50, threshold=0.6): """ Only return results that are likely relevant (distance-based filtering). Lower distance = more similar. Threshold is a fraction of the *minimum* distance found. """ if len(distances) == 0: return [] min_dist = np.min(distances) cutoff = min_dist + ((max(distances) - min_dist) * threshold) filtered = [ dataset[int(i)] for d, i in zip(distances, idxs) if d <= cutoff ] return filtered[:max_results] @app.get("/infiniteScrollPackages/") def infinite_scroll_packages(q: int = Query(0, ge=0)): start = q * 10 content = scroll_data["infiniteScrollPackages"][start : start + 10] headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"} return JSONResponse(content=content, headers=headers) @app.get("/infiniteScrollPrograms/") def infinite_scroll_programs(q: int = Query(0, ge=0)): start = q * 10 content = scroll_data["infiniteScrollPrograms"][start : start + 10] headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"} return JSONResponse(content=content, headers=headers) @app.get("/searchPackages/") def search_packages(q: str): key = "packages" index, dataset = indices[key] query_embedding = model.encode([q]) distances, idxs = index.search(np.array(query_embedding), len(dataset)) # Only keep results that are likely relevant results = filter_results_by_distance(distances[0], idxs[0], dataset) headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"} return JSONResponse(content=results, headers=headers) @app.get("/searchPrograms/") def search_programs(q: str): key = "programs" index, dataset = indices[key] query_embedding = model.encode([q]) distances, idxs = index.search(np.array(query_embedding), len(dataset)) results = filter_results_by_distance(distances[0], idxs[0], dataset) headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"} return JSONResponse(content=results, headers=headers)